
Developer Reference Manual

Commodore-Amiga, Inc.

Commodore-Amiga, Inc.

WestChester, Pennsylvania

Authors:

Dan Baker, Peter Cbema, Eric Cotton, Andy Frnkel, Darren Greenwald, Tim Hawkins, Paul Higginbottom, Mike Kawahare, Perry Kivolowitz,

Scott Lamb, Adam Levm-Delson, Chris Ludwig, Bryce Nesbitt, Benjamin Phistet; Mark Ricci, Stephen D. Ritchie, David Rosen, Carl Sassenxath,

Carolyn Scfaeppner, Leo L. Schwab, Roy Strauss, Guy Wright, Ken Yeast

Contributors:

Dan Baker, John Campbell, Louise Carroll, Jerry Hartzkr, BJ. Mungin, John Orr, Sherrie Rubincan, Gail Wellington

Special thanks to Perry Kivolowitz of ASDG, Inc. and Scott Lamb of Merit Software, Inc.

Editor:

Mark Ricci

Copyright 61992 by Commodore-Electronics, Ltd.

AH rifhf m—nwri- No ft of this pnMiretirei may hn rtnmrf in ■ gotnoval trSMmttod, " —y «""" *y—y —nr

otfanrwiao, wttntotto prior wrianponniaskn publisher. Wcand in the United Statoa of America.

Mmy of tbo dMipSkn used by imwafiraw tod nUers to dhtingBah their products bo y tEadcmaris. Whoso than *■»["**»«— appear in this nd OnDodm-AiiQgi was

aware of a trarhrnari dan, the dnaiyurinna hare been printed in burial caps. CDTV la a registered —>*—* fi—»««■<«■.» « limint/i Amiga is a Watered trafanrek of

Cflmmndnre-Amiga, Inc. Amiga 300, Amiga 1000, Amiga 2000, Amiga 3000, AmigaDOS, Amiga Woridwweh, nd Amiga Kktateit aw tredemaria of Commodore-Amiy, be. AUTOOONFIG

la a andnrnaric of Cocnodore Btoctrocks I jnrted. Cnrnmnrinre and the Ccmmodure logo sic rogbterod tathnarba of Commodore Electronics Limited. Motorola ia a registered trademark aid

6B00Q, «010. 6B02Q, 6BQ90, and 60040 are tiadnmaifca of Motorola, Inc. Marrrtnah ia a registered trademark of Apple Computet, he. MS-DOS and Windows am ingyainil ritelmaiha of

MkwcA.bc.

First printing, March 1992

WARNING: Tha bfiormarian dnacrihnd In this manaal may certain errors or bags, and may not function aa dpacribed. All hdhnnaricn ia subject to enhenenmem or upgrade far any reaacn and

wMnto notkn,ipdadiag to fix bogs, add features, or change pcrfannaaauAawttan software apfrad»,fdlcnnT«tihflity,alt^^

Witt bis Awi— Commodore mahoa no wirrantina or iqpreaetttaticna. otter expreaa, or tapliod, vtt respect to tbo products being aappUod oo an *AS IS* basis and la expressly subject to

cfaa^a wttoot notice. The entire risk as to tbo oao of tfaia infenretion ia rerezznd by too an. IN NO EVENT WLL COMMODORE BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY CLAIM ARISING OUT OP THE INFORMATION PRESENTED HEREIN, EVEN IP IT HAS BEEN

ADVISED OP 1W POSSIBILITIES OP SUCH DAMAGES. SOMB STATES DO NOT ALLOW THE LIMITATION OP IMPLIED WARRANTIES OR DAMAGES, SO THB ABOVE

LIMITATIONS MAY NOT APPLY

Contents

1 INTRODUCTION AND PHILOSOPHY
1.1 Introducing CDTV Multimedia .1

2 THE USER INTERFACE

2.1 User Interface Issues
2.1.1 User Interface Guidelines .1
2.1.2 Designing Screens for CDTV Multimedia.41
2.1.3 Localizing CDTV and CDTV Applications .51

2.2 CDTV Title Issues
2.2.1 CDTV Title Guidelines.55

3 PROGRAMMING AND CDTV MULTIMEDIA

3.1 Getting Started
3.1.1 Programming CDTV.1
3.1.2 Recommended CDTV Development Environments .7
3.1.3 Developer’s Introduction .13
3.1.4 General Amiga Development Guidelines.21
3.1.5 2.0 Compatibility Problem Areas.27

3.2 CDTV Specifics
3.2.1 CDTV Feature Overview.41
3.2.2 Booting A CDTV Application .45
3.2.3 Localization Programming .57
3.2.4 CDTV File System. 63
3.2.5 CDTV Device .69
3.2.6 Bookmark and Cardmark Device Drivers .101
3.2.7 CDTV Printer Preferences.133
3.2.8 The Power of CDXL.141
3.2.9 CDXL Toolkit .147
3.2.10 CDXL Toolkit and Video Capture for CDTV.161
3.2.11 License Material Overview .173

3.3 Graphics
3.3.1 CDTV Graphics .177

3.3.2 Getting The Best Image For Your CDTV Application .181
3.3.3 PAL/NTSC Issues.191

3.4 Sound
3.4.1 CDTV Sound . 197
3.4.2 8SVX: Playing Samples Larger Than 128K.205
3.4.3 Producing High Quality Digitized Multilingual Narrative Audio 213
3.4.4 CDTV Audio Cookbook. 221
3.4.5 CD-DA Sound.231
3.4.6 MIDI .241

3.5 Creating CDTV Applications
3.5.1 CTrac Emulation System .249
3.5.2 Speeding Up Your Titles .255
3.5.3 Optimal Disc Layout. 267

3.6 Manufacturing CDTV Discs
3.6.1 Pre-Mastering and Mastering for CDTV.271

3.7 Debugging CDTV Applications
3.7.1 Debugging CDTV Software.283
3.7.2 Troubleshooting Your Software.299

A OVERVIEW OF CDTV AND A500 DIFFERENCES

B DISC PACKAGING STANDARDS AND GRAPHICS STANDARDS

C RELATED AMIGA ARTICLES
Modification for Switchable PAL/NTSC CDTV.1
International Keyboard Input.3
Finding the Aspect Ratio.5

D CDTV TECHNICAL SPECIFICATIONS

E ADMINISTRATIVE FORMS

F RESOURCES

ii

1.1 Introducing CDTV Multimedia

(

Introducing CDTV Multimedia

Commodore has undertaken a bold initiative—to bring CD-ROM to the consumer market. Up to
now, CD-ROM has been defined as a mass data storage medium for electronic publishing accessed

through a disc drive peripheral to a desk-top computer. With CDTV®, Commodore launch^ a

new consumer electronics category. Interactive Multimedia. Commodore’s goal is to transform

CD-ROM from a somewhat staid professional medium into a mass, popular medium analogous to
trade book publishing, home video, video games and prerecorded audio.

In order to make CD-ROM a mass publishing medium, the computer must become a truly user

friendly family product It is estimated that 75 percent of U.S. households own at least one VCR

while only about 25 percent have a home computer. Why? Or perhaps a better question: why has

the computer remained a school or workplace-experienced product?

Through extensive research in the U.S. and Europe it has become clear to Commodore (as well as

many other companies) that consumers—including many using computers at their workplaces—

do not consider the computer a fun product Rather, it is often considered intimidating, surely

not designed for the family or living room. To try to overcome this deep-seated consumer resis¬

tance, Commodore has adopted a Trojan horse strategy: the computer has been reconceived and
repositioned into a multifunctional home appliance.

The CDTV player integrates an Amiga 500 computer motherboard (built on a Motorola 68000

chip) with an ISO-9660 compatible CD-ROM disc drive within a sleek, black box, a consumer-

familiar form factor resembling a conventional CD-audio player or VCR. Clearly, it is designed to

be part of the living or family room, easily integrated into a household entertainment rack system.

With four video-out ports, the player hooks up to any standard TV set (i.e., composite, S-Video

or RF modulated) or RGB monitor. Its two RCA-type audio ports ensure compatibility with all

home stereos; the player plays all CD-audio titles as well as the record industry’s newest formats,

CD+Graphics [CD+G] and CD+MIDI [Musical Instrument Digital Interface] for synthesizers. To

add to its functionality, a host of accessories, including a trackball controller and mouse, are being
introduced.

Changing the form factor was only the first of a number of critical decisions Commodore made in

creating CDTV. Equally important. Commodore replaced the traditional keyboard with a handheld

remote control. The CDTV remote combines the functionality of a conventional remote with the

playability of a video game device. While the CDTV remote is obviously limited for word processing

or spreadsheet applications, it’s appeal is in its inherent familiarity to other living room intp.rfare

devices and overall ease of use. Needless to say, when you shift the user interface from an arm’s

length distance of a computer monitor to a six-to-ten-foot distance of a home TV set and replace the
keyboard with a remote control, screen images—particularly text—must also change Successfully

redesigning on-screen graphics is one of the challenges facing CD-ROM title developers seeking to
reach the consumer market

While CDTV is being targeted to the consumer market, it is equally appropriate for the education,

library and vertical commercial markets. With parallel and serial ports for printers and modems,

with ports for a wired keyboard and fioppy/hard disk drive, the base CDTV player can be easily

Introduction And Philosophy 1

1.1 Introducing CDTV Multimedia

reconfigured into a full personal computer. It also comes with a RAM/ROM front port for a personal
memory card with up to 256K storage to further enhance player functionality. Rear slots allow for
easy integration of hard disk, SCSI, LAN or other specialized videocard. The use of a genlock easily
integral CDTV with a laserdisc player to create a third-level, interactive, full-motion solution.

CDTV is a high-quality, affordable, all-in-one computer/CD-ROM player. Commodore is working
with a host of training, catalog, point-of-sale/information, other business groups and value added
resellers to develop appropriate multimedia solutions to their specialized needs.

It is in the consumer or mass market that Commodore expects to see CDTV’s greatest impact Key
to its success is providing a diverse selection of titles or applications. The first CDTV catalog
listed 92 titles in five categories: Arts & Leisure, Education, Entertainment Music and Reference:
Periodicals and Productivity are forthcoming. The wide assortment of titles is designed for the
whole family, both children and adults. However, Commodore has made a commitment to ensure a
strong representation of education, learning and reference titles. Approximately half of all current
and planned tides are learning related, the other half are games, simulations and entertainment
oriented. This balance is appropriate for a TV-based experience as well as the challenging decade

that lies ahead.

Today, there are over400 CDTV licensees worldwide. They are drawn from a diverse assortment of
backgrounds, including many of the world’s leading media conglomerates (e.g., Disney Software,
Grolier, Lucas film), specialized multimedia publishers (e.g., Applied Optical, Discis, ICOM Simu¬
lations and Xiphias), leading games developers (e.g., Accolade, MirrorSoft and Spectrum Holobyte)
and even garage-shop startups that are drawn to CDTV because of the entrepreneurial opportunities
this exciting new medium makes possible. Publishing for CDTV is relatively easy and remarkably
affordable, be it for an encyclopedia, a Jack Nicklaus golf game or even a way-out cyberpunk comic

book.

In cpnri.iginn, CDTV is a bold initiative to bring CD-ROM to the mass consumer market First
CDTV represents the historic conversion of consumer electronics and computing. These two
essentially parallel industries are now coming together to create not only a new type of home
appliance (i.e., one with a CPU as the active component of a consumer product), but also a new
gyration of CD-ROM applications or titles that will provide consumers with a richer, more
rewarding participatory experience. Second, CDTV addresses consumers’ deep-seated resistance
to home computing by establishing a new category that goes beyond the limitations of both consumer
electronics (i.e., single-function products) and computing (e.g., word processing or spreadsheets).

Third, the CDTV experience -like TV viewing, VCR or laserdisc usage and videogame playing—is
based on an enhanced interactive relationship between the user and the home TV set CDTV
expa«d« the current interactivity experience of TV usage: while TV viewing is (at best) reflective,
VCR or laserdisc usage offers single-function involvement and videogame playing maximizes eye-
and-hand coordination, the CDTV experience is participatory. Combining the multi-functionality
and control of computing with the enormous storage capacity of CD-ROM, CDTV adds a new
dimension—offers an enhanced experience—not available from any other home entertainment and

information product

Finally, CDTV is a product for today and tomorrow. Its diverse titles have appeal to the whole family
as the next-generation multimedia CD format But with the ability to expand to a full computer or add
a modem, printer or genlock, it gives consumers flexibility and multifunctional capabilities which
they can take advantage of depending on their own needs or desires. This will become increasingly
important during the 1990s as we see CD-ROM being integrated into innovative consumer media

2 CDTV Developers Reference Manual

1.1 Introducing CDTV Multimedia

categories. Two such areas could be multimedia CD-based catalogs integrated into on-line or other
telephone-network services and the creation of multimedia homework integrating text, audio and
graphics/videodata drawn from a CD disc and other sources on videotape. This is the future. In the
mean time, CDTV is available commercially in the U.S., Canada and throughout Europe.

Introduction And Philosophy 3

2.1.1 User Interface Issues :User Interface Guidelines

User Interface Guidelines

I. INTRODUCTION

II. USER INTERFACE GUIDELINES

2.1 The Screen

2.2 Remote Control and the User

2.3 User Interaction

2.4 Selection

2.5 The Remote: Specification for Use with an Application

2.6 Other Guidelines

2.7 Accessories

III. USER TRAINING OF TITLE USE

3.1 Tutorial

3.2 Help Function

3.3 Error Messages

3.4 Title Documentation for the User

IV. INTERNATIONAL CONSIDERATIONS

4.1 Preparing Titles for Other Languages

4.1.1 Allowing for PAL
4.1.2 Language and Cultural Distinctions

4.2 Foreign Language Conversion

4.2.1 Segmentation of Audio Tracks to Allow Translation
4.2.2 Appropriateness of Symbols (Icons)

APPENDICES

A. CDTV Glossary

B. CDTV Is Not A Computer

C. IR Remote Control Description

The User Interface 1

2.1.1 User Interface Issues:User Interface Guidelines

I. Introduction to The User Interface Guidelines

The purpose of these guidelines is to promote a uniform look and feel to CDTV applications. What
does “uniform look and feel” imply? As presented here, it means that many of the Amiga intuition
capabilities are disallowed as being difficult to see in a living room environment or too complex or
confusing to a new home user. It means that low level issues such as a small number of fonts and
the colore to be used are strongly suggested. It means that many “high level" functions, such as
control panels, list requesters, and scrolling functions are to be supplied by a toolkit (or descnptions

provided prior to the toolkit being done.)

The effect of these standards will be to increase the uniformity of look and feel to the user across
many different applications. Note that this should have no effect on the developer’s freedom of
information presentation or content (i.e., an animation or graphic, which is what the user selected,
will be under complete control of the developer). Also note that by supplying the toolkit pieces, the
standard fonts, and other elements of the UI standard, the level of effort for developers should be

greatly reduced.
The user interface for the CDTV device should reflea the intended user population and environment,
that is, it should be aimed at use on televisions in a home recreational setting by unsophisticated
and often brand new computer users. We are dealing with a TV user, not a computer user (i.e.,
entertainment not work), and should be motivated to build titles accordingly.

These user interface guidelines are presented to assist you in developing an application that is easy
for the average CDTV owner to use. Remember that the CDTV player is not sold as a computer and
that every time you deviate from the guidelines, you place another obstacle between your product
and the user. Our competition is not other CDTV applications, it is television. With too many

obstacles, the user will simply change the channel.

These User Interface Guidelines are not laws set in stone.

This document should be considered a work in progress. We invite your questions and comments.
If you would like to become more involved in the continuous process of CDTV UI standards
evolution, contact Alan Campagna or Guy Wright, c/o CDTV, Commodore, West Chester, PA.

Use of This Document

This document, the CDTV User Interface Guidelines, is written for CDTV developers to ensure
that CDTV titles follow a consistent pattern for user interaction. At some point in the future.
Commodore is likely to limit some developer benefits to titles that adhereto the standards. These
might be inclusion in Commodore’s booth at major exhibitions, representation on the Welcome disc,

bundling opportunities, etc.

Equally as valuable as these pre-sales benefits are the post-sales value. Following the UI guidelines
means minimized post-sales support If a user learns how to operate one title that follows the
guidelines, there will be hardly any learning curve for other titles. This not only means fewer
support calls and better word of mouth PR, but is likely to result in better product reviews and fewer

dissatisfied customers and returns.

It is planned to have the UI standards available in data base form. In the near future, it is planned
to accompany this document with source code, IFF files, and working programs to illustrate the

guidelines and demonstrate how they may be implemented.

Sections n, III and IV of this document describes the recommended guidelines.

2 CDTV Developers Reference Manual

2.1.1 User Interface Issues .User Interface Guidelines I

Overview of CDTV Ul Issues

The UI standards focus on issues for consideration by developers (especially Amiga developers)
before and during the title design stage. Without keeping these standards in mind, a developer
might have the tendency to design the title with a personal computer in mind and subsequently, at
the detail level, turn to these UI notes for help - too late!

When starting a CDTV project, remember that good CDTV titles include the following character¬
istics:

1. Ease of use.

2. Consistency of operation. Uniform look and operation across all similar applications.

3. Minimum documentation, or intuitive operation in any situation.

4. Take advantage of the CDTV capabilities (using up to 650 Mbytes of data, including sound,
music, and digitized speech, etc.)

II. User Interface Guidelines

This section presents the guidelines in the following order

2.1 The Screen—The issues related to viewing distance, TV screens, colors, and fonts.

2.2 Remote control and the user—Use of the remote as a positioning device; limitations and
suggested uses.

2.3 User Interaction—General and specific situations of user interaction with applications.

2.4 Selection—User interactions specific to selection situations.

2.5 The Remote: Specification for Use with an Application—Specific button usage.

2.6 Other Guidelines—Operation of the applications in booting up, exiting and other common
situations.

2.7 Accessories—Support of CDTV accessories.

2.1 The Screen

Televisions are not the same as computer RGB monitors. Television is an interlaced, overscanned
medium. What looks good on a monitor, may look terrible on a TV set in the home. View your
screens on a TV set (both PAL and NTSC) before you commit them to CDTV disc. No matter how
good your application is, if it doesn’t look good on the home TV set the users will be disappointed.

Viewing Distance

Keep in mind that users will have to work with the application from a 6 to 8 foot viewing distance.

Simplicity of Screens

Screens must be simple. Colors must look good on TV. Fonts must be large. Symbols must be
easily recognized, large in size, distinctive in color and shape, and meaningful to most viewers.

The User Interface 3

2.1.1 User Interface Issues .User Interface Guidelines

Fonts
All fonts should be anti-aliased, outlined or backgrounded for good visibility.

Text should be limited to a maximum of 25-30 characters per line, ten lines of text per screen.

Fonts should be sans serif, bold (but not so bold that holes in letters close up). TV screens tend to
blur images slightly, filling in small holes. Avoid script, open faced, or condensed type. Some fonts
that work well on TV are Optima, Theme, Futura, Metro, News-Gothic, Spartan, and Tempo.

The font should have a 1/8 to 1/5 width to height ratio.

A good rule of thumb is to leave about 1/2 letter height space between lines of text.

The best text colors are high luminance, low color saturation. Avoid fully saturated colors. Text

also works better if outlined or with drop shadows or both.

The best way to test text is to try it on a TV set on the background you plan to use. If the background
is busy or bright, you might try boxing the text in a neutral color.

Currently, two new fonts are available to CDTV developers from Commodore without charge or

restriction.

Colors

Colors should be subdued rather than bright to minimize bleeding. On a color saturation scale of 0

to 15, colors should be no more than 12.

TVs have about a 1:20 lighting ratio (the brightest thing on a screen can only be 20 times brighter
than the darkest thing). This can be further broken down into a 10-step grey scale. In order to have
an object appear discemibly brighter than another, it must be at least one step away on a 10-step
grey scale. In order to make something appear much bolder (such as text), it should be at least two

steps brighter or darker.

Background colors should be an off-white or grey. Avoid using pale colors (pale pink, green, etc)
as these can give surprising results on NTSC or PAL. For example, an attractive pale, salmon pink
on a PAL TV set becomes ugly virulent orange on an NTSC set Note also that saturation levels
vary from PAL to NTSC. Colors that appear “normal” in NTSC may wash out in PAL. Refer to

Developer Notes section on PAL/NTSC considerations.

You should test your artwork on both PAL and NTSC TV sets, or monitors with composite input

Contact your local Commodore office for availability.

As a rule of thumb, it is preferable to have text in a dark color on top of a light background.

Color Dependence
Options should not be presented as distinct only in color. For example, do not say “select the green
box” (eight percent of the male population is colorblind to at least one combination).

4 CDTV Developers Reference Manual

2.1.1 User Interface Issues .User Interface Guidelines

Flicker

Beware of staik contrasts (all-black text on an all-white background for example). These renditions
may exacerbate the flicker on an interlaced screen.

In interlaced modes, flicker is more evident. Flickering is most notable over sharp contrasts.
Horizontal lines flicker more than vertical or diagonal. PAL flickers more than NTSC. Make all
horizontal lines at least 2 pixels wide.

To reduce flicker, you may use “shadowed” fonts. This trick, often used on TV subtitling, is very
effective.

Product Testing for TV Viewing

Perform final testing of products on a TV, not an RGB monitor. View your product from a normal
TV viewing distance. Test on both PAL and NTSC.

Number of Items on Screen

There should be no more than 9 symbols on screen at one time. There may be more items at one
time if they are all of the same type (e.g., numbers in a list), and easily recognizable by the user.

Borders

Screen developers should work within a “safe” area. The practical “safe text” area on a screen
should have a 1/10 total screen size border on all sides. For example, a 320 x 400 interlaced display
should have 32 pixel-wide borders on each side and 40 line borders on the top and bottom of the
screen.

Note that screen borders may need to be changed when going from PAL to NTSC. PAL CDTV
players display 256 lines (512 in interlaced mode); NTSC players display only 200 lines (400
interlaced). Use the Bookit utility in the startup-sequence to center the screen according to the
user’s Preferences settings.

Desktop Model

The home user is not in a productivity environment, and the TV screen is too small for scrutiny
from 8 to 10 feet (2 to 3 meters) away. For these reasons, the following rules apply:

• No windows, no window borders—the whole screen is a window.

• No window gadgets; no windows to close or resize.

• No pull down menus. Use symbol menu trees. See Section 2.3.

The User Interface 5

2.1.1 User Interface Issues .User Interface Guidelines I

Text
Wherever possible, avoid text for menu choices in favor of symbols.

In text presentation, design the screen for large fonts. If the screen is static in nature (such as
credits), use multiple screens or scrolling text if text does not fit well, rather than reducing point

size.

If the application must present scrolling text to be read, make the scroll pleasant so that the large font
size can be easily accommodated. If possible, propose various font sizes, and let the user choose
his font of preference. This lets users choose a large font for working on TV sets, and a smaller one

(displaying more text per screen) for working on a monitor.

Note that text by its very nature is language dependent, making the distribution of the application
country dependent If text is not necessary to the application, avoid it or localize it as much as

possible.

Screen Saving
Since TV screen phosphor can be damaged by constant, unchanging pictures, Commodore strongly
recommends that the developers provide for a “time-out” on any screen. If user input has not been
received for some period of time the screen will blank or go to a “screen saver mode (which can

revert to the prior screen on any button event).

Use the Booklt utility in the startup-sequence to invoke the system time-out screen.

Avoid “Dead Air”

Avoid black screens. One of the prime rules of TV broadcasting is to avoid “dead air”, when nothing

is being transmitted. This holds true for CDTV.

Avoid black, empty screens. When you must load a new image, either leave the previous image on

scree", or add a message or symbol indicating action.

In order to avoid long bootup sequences, use the keeper utility in the startup-sequence to display

something (a logo, perhaps) while loading an application.

6 CDTV Developers Reference Manual

2.1.1 User Interface Issues'.User Interface Guidelines

2.2 Remote Control and the User

Primacy of the Remote

The standard interface shipped with the CDTV player is the infrared (IR) remote controller All the
features of an application should be accessible through the remote controller.

Applications must be designed to use the remote. Do not assume any other device. When the
keyboard or joystick is required for the application, the remote should still function properly.

Most users will have only the remote. Design the application so that the remote can be used for
everything.

Positioning—No Screen Pointer

As a positioning device, any remote unit will be awkward to use for fine adjustments. Moreover,
like a mouse, it is not completely intuitive. For that reason, the guidelines are to have:

• No pointing of a cursor.

• No gadgets for resizing, dragging etc.

• No double-clicking.

• Nodragging.

• No pull down menus.

This means simplifying screens, limiting the number of options on each screen, and supplying
defaults wherever possible.

Key Functions

A set of definitions of key functions has been established. These are presented in section 2.5.

The User Interface 7

2.1.1 User Interface Issues .User Interface Guidelines I

Mouse/Joystick Selection
If the operation of the application depends on this being in one state or the other, make sure the user

is prompted to set it*..try to determine that it is correct.

In general, do not depend on the position being correct, and adjust the software to operate well in

either position.

2.3 User Interaction

The visual rules in 2.1 and the use of the remote in 2.2 are augmented here to describe the standard

operation in dynamic or interactive situations.

The keys to the rules in this section are consistency and the use of visual and audio cues to better

support user interaction.

Feedback
Both visual and audio feedback are necessary. When the user presses any button which can be
interpreted by the application as meaning a change of state or user action request, let the user know

that the button was read.

When the user has an item highlighted and presses one of the select keys on the ER remote, have a
graphic or audio indication that the program got the message. A “busy”, “working”, audio beep,
screen flash, fade to black, or other visual/auditory signal will prevent users from pressing the select
key over and over or thinking that the player is broken. The button should highlight along with a

simultaneous audio “beep”.

When the options are complex or detailed, provide help screens or audio help.

Negative Feedback.
When the user presses buttons which are irrelevant to the process at hand, an audio cue that
this is “wrong”, such as an unpleasant sound, would greatly help to channel the user in the
right direction. If it is necessary to have buttons that are inoperable or irrelevant, those buttons

should be ghosted and not selectable.

Disc Wait Feedback. . . .
Whenever the application must access the CD, display a visual cue (busy icon) so the user
knows something is happening. Inform the user when disc I/O or processing is going on.
Something like animated turning gears, “Zzzzz”, or a “Working...” message might be stutable.
Try for animation whereverpossible. Commodore will provide somedefaultrecommendations,
but title designers may wish to use something more specific to their context

Animating the book selected (such as making the book move out from the shelf) is a good way to let
the user know that the button select was seen and to keep the user’s attention while the next screen

is fetched and made ready for presentation.

8 CDTV Developers Reference Manual

2.1.1 User Interface Issues .User Interface Guidelines I

Limitation of Activity

Maintain a single window of activity for selection operations, or ones which require the user to
perform an operation. The multi-window environment is too contusing for CDTV users. (Note
that this does not mean that you should avoid multiple windows for presentation; these can be very
interesting and useful.)

What should be avoided, is the necessity for the user to choose the process to which to send an
input

For example, a typical Amiga Workbench situation may have several active windows on the screen
at the same time; the user indicates the window to which he/she wishes to input data by clicking

on some portion of that window. This is what should be avoided in CDTV screens. Multiple
requesters, such as those that appear in the CDTV ROM Preferences screen, are acceptable, since
the user can clearly position to the requester desired with the arrow keys, so there is no confusion
of where the next key strokes are going.

In some applications, such as games or those in which user input is treated as asynchronous with
the application flow, care must be taken to keep the user from being confused as to what is expected
and what effect pressing the button is having.

Consistency of Operation

Ensure that symbols (icons) have a standard meaning for button operation in similar situations.

Section 2.5 presents standard uses of the buttons.

Menu Design

Selection situations should always look the same; the look may change, but feel and function are
the same.

• Use a symbol cycle, described below.

• Use ghosting to indicate an option is not currendy selectable.

• Always provide a uniform exit symbol to return to upper most level of a menu tree (main
menu).

• Support a standard way for user to navigate menu trees.

Refer to Section 2.4 for more details on selection operation.

Symbol Cycle

The selection by the user of the next action to perform should be done by having the user cycle
through a list of selectable options represented as symbols (subject to the limit of 9 symbols
per screen). Always indicate the currently selected symbol. Outline, frame, flash, reverse the
background color or animate the items as they are highlighted. The user must be able to see which
items are highlighted from across the room.

Provide symbols on screen to perform most operations. Do not replicate remote control buttons on
screen as symbols.

The User Interface 9

User Interface Issues :User Interface Guidelines I

The selected symbol is then chosen with the OK (enter) or A button.

Provide a gimpi* cycle algorithm so that it is obvious how to get to any symbol quickly. Always
provide a default symbol. Attempt to choose the most appropriate default The default should be

the symbol the user will most likely choose next

Make the transition cycle smooth; control the “bounce” so that the user does not have to hold the
button too long nor overshoot desired symbols.

Selecting from a list

Selecting from many choices (words, numbers, or icons) is accomplished by presenting a list which
scrolls vertically. The list scrolls behind a highlight Using the arrow keys, the user moves the list
making the highlight appear to move. Specifically, the left and up arrows move the list down (the
highlight appears to move up the list), and the right and down arrows move the list up (making the
highlight appear to move down the list). To reiterate, we are talking about moving the list up and
down. The center item always remains highlighted. The user scrolls the list behind the highlight.

Except in cases of extreme space constraints, a minimum of three list items should appear, displaying
a blank at the top when the first item in the list is highlighted and at the bottom when the last item

is highlighted. Here is an illustration;

list:
one
two
three
four
five
six

five

one
highlighted six

two

This gives the user a visual clue when there are more items to choose from than can be displayed at

one time.

In long lists, accelerate the list scrolling by holding down the direction arrow for more than a few

seconds.

To indicate a choice, the ENTER or A (left select) button is pressed when the desired item is
highlighted. In a single- choice situation, pressing this button takes the user out of the list window

and onto the next step.

The B button exits the list without making any selection, i.e., acts as an abort.

When more than one choice can be made from a list, the A button does not exit the list but changes
the highlight The changed highlight remains on the chosen item if the list scrolling is continued.
Placing the chosen item in the center of the window (i.e., the regular highlight area) and pressing A

again removes the special highlight, i.e., de-selects.

10 CDTV Developers Reference Manual

2.1.1 User Interface Issues . User Interface Guidelines

To indicate that selection has been completed and to exit the list, one or more “done” or “end”
woids or icons should be included in the list For example, to select two items (“three” and “four”)
from the list:

list:
one
two two three
three
four three

highlighted
four

five
six four five
done

press ENTER or A press ENTER or A

six

done
highlighted

special
highlight

press ENTER or A

If appropriate, the PLAY button could also be used at this point to exit the list and begin an operation
based on the section.

The User Interface 11

2.1.1 User Interface Issues .User Interface Guidelines I

If the older of selection is important or an item can be selected more than once (or if the list is long
enough so that it is difficult to keep track of choices), a separate “item order list” is built as each
itptn is selected. (ENTER, A, PLAY, and B buttons act as above except that choosing an item a
second time does not de-select it Instead, the item is selected a second time. Using the previous
example and selecting “three-four-three":

highlighted

press ENTER or A and item order list shows: three

three

four

five

highlighted

press ENTER or A and item order list shows: three

four

highlighted

press ENTER or A and item order list shows: three

four

three

The list could include separate edit items such as “clear list”, “delete last entry”, etc. Alternatively,
these edit options could be outside the list An “edit” item in the list would move the user to them.

12 CDTV Developers Reference Manual

2.1.1 User Interface Issues -.User Interface Guidelines

Matrix, Calendar, or Grid Lists

When the choice is icons or numbers (not words), this style is a viable alternative. (The track
selection of the audio control panel is an example of this type of list.)

When there are more entries than can be displayed at one time, the entire grid scrolls up and down
(that is, row by row) when the highlight is moved above or below the items displayed. Except when
it is obvious (as in the track selector which begins with “1”), a blank row should be used top and
bottom as with the vertical scrolling list to indicate when there are no more choices. At least three

rows should be displayed.

With grid lists, the highlight is different from the vertical scrolling list In this case it can be moved
around the grid in any direction with the arrow buttons. The highlight moves in the direction of the

arrow pressed.

1 2

3 4

5 6

highlighted

press left arrow

1 2

3 4

5 6

Pressing ENTER or A button indicates a choice and exits a single-choice grid. When appropriate,
it also begins the selected function. A multiple-selection grid requires a “done” option and acts as
described for vertical scrolling lists, either changing the highlight or adding an item to an order list.
B aborts the process. PLAY begins execution of the related activity (if appropriate).

Symbol Design

Make each option as clear as possible, from the design of the symbol.

The best symbol is clear and intuitive to the user—it does not have to be explained.

Symbols are better than text.

The average CDTV owner does not have the usual computer literate understanding of symbols and
visual cues which are standard in the industry. Test your symbols on non-computer people first.

Use interesting symbols, specific to a situation, wherever possible. For instance, the “bookshelf”
selector is a good one because users can relate easily to “choosing a book”; this gets them out of
thinking of the machine as a computer and moves them into a familiar environment.

The User Interface 13

2.1.1 User Interface Issues .User Interface Guidelines

Help Function

Provide help at all levels of the application.

Build help into every menu selectioa

Use the Escape “?” button to bring up a help screen.

The help screen can be used to allow the user to enter a tutorial on the product This prevents the
user from having to navigate back to the top (or wherever the tutorial entry point symbol was) to
find out what to do.

The help screen can be used to provide an entrance to extended functionality, or special navigation
of the tree, or setting of Preferences and modes. This allows the power user to get to things quickly
without bothering the novice user with extraneous decisions.

Escape Function

Use the Back button “B” to allow the user to get out of a section of the menu, back up a level
in a tree structure, or to stop a presentation and return to the menu which activated it This is a
very important user friendly feature which most users will come to depend upon. It allows them to
audition sections of the application without running the risk of having to sit through presentations
which they don’t want to see.

2.4 Selection

Selection situations are the most common application requirement. Users must chose areas of
interest, actions to be performed, or set Preferences or options. Each situation is somewhat different,
yet the similarity of needs leads to the following general set of guidelines. Standardization of the
selection rules will help all CDTV developers by giving CDTV users the confidence that they can
pick up a new product and use it successfully without hours of training.

Selection Modes

Use a single click on the left select button (marked A on the remote control) to activate an option
or select an item. (Technically this is the equivalent of pressing the left mouse button once—no
double clicking.)

The selection methods which can be used, in order of preference;

A menu of fixed items
This is by far the most useful form of selection. It may take the form of a tree of fixed menus,
or a linear chain of connected menus.

Lists of similar items
Here the items represent similar objects. These objects may be (for example) the countries of
the world or the food topics covered in a group of recipes. See below for a presentation of
choice of lists versus menus.

Browsing
Although this may be accomplished via menus or lists, browsing can also be supported through
visual analogies, such as geographic movement, or simulation of motion through space.

14 CDTV Developers Reference Manual

2.1.1 User Interface Issues .User Interface Guidelines

Choice of Selection Mode

To choose between the use of the selection modes (menu networks, menu chains, or lists), the
following guidelines are suggested. Each mode may be appropriate for a section of the application.
The modes may be mixed, but the general order of use follows.

Menu Networks

Use menu networks for top level choices, and for all action choices. Lists are seldom used
for action choices. The Welcome Disc is a menu network. Most application selections can be
handled with menu networks.

Menu Chains

Where a menu tree goes beyond 2 or 3 levels, it gets too complicated to remember where you
are. To keep the number of levels small, break large numbers of choices into a menu chain,

connecting each screen to the prior and the last with arrow symbols. At any level in a menu
network, where the number of choices is larger than 9 items on a screen, make it a chain at
that point. The linear form is better for equal level choices such as language Preferences. Tree
form, which is most general, is preferable where a natural hierarchy exists.

Lists

Lists are used mostly for selection of objects, not action. Each object bears a similar relation
to the others in the list (e.g., they are all planets or bodies in the solar system). Mining several
types in a list is confusing and usually indicates that several lists should be used. The tiW.,
track, and language selections in the system audio control and preferences are examples of list
selection.

The order of preference is therefore: menu network, menu chain, list

Text Entry

Where absolutely necessary, text entry can be accomplished with the remote by:
a) Selection from a “hot word” list, or making words in text already presented hot.
b) Presenting the user with a keyboard on the screen which treats the letters as selectable symbols.

(The arcade name selection technique presents the letters as a linear, alphabetized list).

The discussion concerning the language dependence of any text-based application applies more so
to text entry.

Guidelines for Menu Networks and Chains

Limit the number of symbols to 9 on screen at one time.

Provide feedback (see Section 2.3) for indicating selected symbol, and button presses.

Provide help on any screen: this may be a specific symbol, (standard help symbol is “?”); or use the
Escape button.

Provide network control symbols: up to move to the last level, right to the next in the chain, left to
move to the last in the chain. Audio forward-back button may also be used for flow.

This leaves about 4-6 “business” symbols on most screens, which is a determining factorin limitation
of menu depth.

The User Interface 15

2.1.1 User Interface Issues :User Interface Guidelines l

Selection of menu symbol: To select an item, activate an optionor begin a task or function, the user
will press the left select button marked “A", or the Enter button. The button will be pressed once.

Navigation aids: in addition to the network control symbols, provide some form of “map” for the
user, letting them know where they are in the tree. This can be done by appropriate screen design,
or titles or symbols which let them know where they are. The Help function can contain a brief

description of where the user is.

Guidelines for Lists
Lists may take many forms. A list should have objects which are related to one another.

Scrolling is a natural function for lists. The nature of the scroll function is critical to the pleasant

use of the list

Refer to the ROM interface for examples of different types of lists:

Numeric List, by digit
The time setting of the ROM Preferences shows how a number list can be scrolled by usmg the

up/down arrows for list scroll, with the Enter button for selection of the item.

Item List .
The Track Select shows how items can be presented in a grid form, allowing the directional
arrows to be used in both horizontal and vertical movement. In the case of the grid being
larger than the screen, a directional arrow appears when the user positions the selection to the
top or bottom rows; if there are more selections above or below, the arrow indicates that an
arrow movement “off” the grid will cause the grid to scroll. Refer to the ROM Audio panel for
reampifg Note that the Audio panel operation also illustrates the requirement for selection of

multiple items from a list This is covered below.

List as a menu chain
Note that the Preferences operation of the ROM handles the selection of language as a fixed
menu of items, chained together. It is worth noting that when the items of a list are fixed, as
they are in this case, the use of a linear menu chain is much easier on the user and preferred
to a general list format Grid lists can be used where the selected items can be easily seen and
recognized by the user. For example, numbers and single letters are recognized rather than
read. Grids are not appropriate for text or symbols which are not easily recognized.

2.5 The Remote: Specification for Use With an Application

The use of the remote has been mentioned in the prior sections. Here we describe the use of each
button, and additional features of the application which should be triggered directly from the remote.

Two general rules should always be followed:

• Observe standard uses of the keys.

• Do not duplicate key functions with symbols on the screen.

“A” Button
This is the primary “Enter” button. It activates selections in menus and lists. Since it is usually
under the user’s right thumb, it is easier to reach on the remote than the Enter button. It will be used

almost exclusively for most applications.

16 CDTV Developers Reference Manual

2.1.1 User Interface Issues .User Interface Guidelines

Enter (OK) Button

In most situations it functions the same as “A”, but may have alternate meanings in multiple selection
situations. Refer to the Audio Panel track selection operation for an example; the “A” button means
‘choose this item and add it to my list of selections”, whereas the Enter button means “I’m done
with the list”.

The distinction between the use of “A” and Enter is that 1) where two forms are needed, as in
multiple selection, “A” is the intermediate “OK”, and Enter is the final “accept all” indicator 2) in
situations where data will be saved (e.g., bookmarks or game scores saved to NVR) the Fnw is
required to force the user to certify that this is the action desired, since the “A” button is too easy to
hit accidentally.

“B” Button

This button functions as “Exit this level”, meaning “Go up to last menu.”

B is used to break out of a section or level. It should also serve as an “abort operation” button, to
terminate an animation or presentation and return to the menu which caused the action to occur.

Do not use the “B” button to access pull-down menus (as in Amiga software). Avoid pull-down
menus entirely.

Escape Button

The Escape button should be treated as a “?” (question mark.) Its function in all cases should be to
bring up some kind of help screen.

The help screen might be an access portal to many other features of the application; it could give
the user the option of going through a demo or tutorial section, refer the user to her manual, bring
up contextual help screens, or have special options such as “return to top”, “return to previous
screen , jump to another secnon”, “jump to another mode”, etc. It could allow the user to change
operational modes such as power user functions. This can be the primary means by which the user
learns about the features of the application.

The distinction between the “B” button and the Escape is that the “B” is more simply a menu
navigation and presentation control button, whereas the Escape is to provide help and let the user
know more about what to do.

A/B Buttons In Game Applications (ONLY):

They are the equivalent of the left and right mouse buttons in mouse mode. In joystick mode, only
the left selector button will function as a fire button.

N°te to game developers: the remapping of the remote buttons for special needs of gam<»g is
certainly possible, but the standards for such uses are beyond the scope of these guidelines.

Arrow Buttons

On the left side of the remote is an eight-way direction key, which is used to move pointers on the
screen, make selections, etc.

These arrow buttons are always used to move around. Move from symbol to symbol, move through
a list, move to another selection, etc.

The User Interface 17

User Interface Issues .User Interface Guidelines I

Joystick/Mouse Toggle Button
When in the joystick mode, the direction and fire button signals sent to the CDTV player will be m
standard joy, four button, eight-way form. When the remote is in the mouse mode, intuition mouse
movement calls will return values in four pixel increments rather than normal Amiga one-pixel
increments. This was done, primarily to enhance the responsiveness and speed when moving a
pointer. Developers should tty and write their applications to trap for both modes if possible and
notify the user to press the joy/inouse button to change modes if necessary. A simple press left
selection button to start” message to the user will let you determine what mode the remote is in. This
button, currently a toggle button, will become a switch in the next revision of the remote control.
The user will be able to identify the mode he is in by simply looking at the remote.

When in joystick mode, the only active buttons on the remote are the “A” button and the four
directional arrows. All other buttons are disabled. Should your applications need any other buttons,

tell the user to switch to the mouse mode.

Numeric Buttons
Numbers are entered from the remote control using the number keys. ENTER indicates that a
number is complete. For example, on the audio panel, the user is able to enter individual track
numbers in this manner. To indicate that they have completed a track number, they press the ENTER
button, e.g., 6—ENTER (for entering track 6 in the list) or 2-9—ENTER (for entering track 29 in
the list). This avoids the necessity of requiring leading zeros on single digit tracks.

Audio Control Buttons
Next to the volume controls are buttons for controlling all the audio functions of the CDTV player
(rewind, fast-forward, play/pause, and stop).

In addition to audio control, the audio buttons on the remote control and the front panel of the player
should be used as “navigational aids” for the user.

Play/Pause
A press of the play/pause button pauses the application. Another press re-starts the application from
that point. Play/pause also acts as a mute button, halting the audio as well.

Fast Forward
The fast forward allows the user to skip forward through screens or a section.

Reverse
The reverse button allows the user to back up through screens or a section.

Stop
The stop button may be used to stop an application. However, beware of inadvertent keypresses on
this button. If stop is used, the Play button should re-start the application from the beginning.

Obviously, there are some applications where use of the audio buttons for these purposes doesn t
make sense, but in many cases the extra controls given to the user can simplify things quite a bit,
since their use in the audio world is well understood.

18 CDTV Developers Reference Manual

2.1.1 User Interface Issues '.User Interface Guidelines

GenLock Button

For use with the optional genlocking accessory. This button cycles the CDTV player through the

three genlock modes: source only, mixed source and computer, and computer only.

TV/CDTV Button

For switching between CDTV and normal TV viewing when the CDTV player is <y>nnected to a

TV via an RF modulator (this toggles the RF modulator and light on the player front panel).

Volume Buttons

These are next to the A/B selector keys. There are two buttons for adjusting the headphone level

volume up and down. The volume level is indicated by the light on the front of the player.

Power Button

Turns the player on and off.

NOTE: if the player is turned off with the remote, it must be turned on with the remote, even if the
panel on/off switch is used.

NOTE: all applications may not be able to use these buttons, but when practical they simplify
operation since they are well understood by users.

2.6 Other Guidelines

These issues relate to the operation of titles other than the interactive ones covered previously.

Documentation

There should be minimum printed documentation. A well designed application will result in
intuitive operation in any situation.

Timeouts

Build “timeout” features into applications. When there is no input from the user after a few minutes,

the program should revert to a self-running mode. This is particularly important at the beginning of

a session. Startup screens should offer the choice of beginning right away or proceeding through a

tutorial. After a minute or two without user response, jump right into the tutorial.

Use “arcade style” demo of the product

Refer to “Screen Saving” in Section 2.1.

The User Interface 19

2.1.1 User Interface Issues .User Interface Guidelines I

Exiting
This is a minor issue in most cases because the machine will re-boot when a new disc is inserted
(unless the program has specifically requested an override of the re-boot function for multi-disc
application) However, all applications should exit cleanly and if any settings or Preferences have

been altered, they must be reset before exiting.

An application should never return to the CLI window. If the application must exit, it should allow

the system to reboot

Note that a program designer should trap to prevent the user escaping through the top of the menu
tree by excessive “B” button presses. A simple way to do this is to make the default on the top
menu something other than the exit symbol, and to explicitly check that “B” on the top menu is not

accepted as a legal command.

Program Crashes
Certainly no developerwill plan to shipaproduct with known bugs. However, some bugs do (rarely,

we hope) go undetected until users do really unexpected things with the software.

Plan to have a mechanism to get information on what the user did to cause the problem.

In the case of system crashes, if applications use the standard 1.3 operating system provided in the
ROMs, the guru meditation has been removed. In case of a fatal error, the system resets.

Autobooting

All applications must be auto-booting.

This can be simply accomplished by providing the usual startup.sequence file in the system S:
directory. Do not hardcode your startup sequence to a specific device number.

The Booklt utility, available on the CDTV Tools diskette, should be included in your startup-
sequence. It reads the user preference settings from the NVR, and centers the screen accordingly.

Booklt can also be used to implement a screen saver.

Nationality and User Preferences Selection
Ideally, all applications will be either language independent or provide versions of the program in
all trngimgfts Developers should be aware that this machine will be sold in many countries and
when the application does not currently support the language selected in Preferences, the user must

be presented with alternatives.

While many people will adjust the Preferences (particularly nationality settings), most people will
never touch them (if it ain’t broke don’t fix it). However, certain adjustments will have to be made

by the user upon power up or after a loss of power.

One of the very first things that an application should check for is a match on lanprage settings in
Preferences. If the application does not provide a language specific version matching the particular
language selected in Preferences, the application must provide the user with an alternate choree or

set of choices.

20 CDTV Developers Reference Manual

2.1.1 User Interface Issues .User Interface Guidelines

2.7 Accessories

• Printing— If an application requires printer control, developers should contact Commodore
for printer drivers and Preferences code. There is a location in the NVR to store a printer
selection, however, the printer drivers must be included in the title. When an invalid value is
found in the printer save area in the NVR, the title should bring up a screen where the user can
indicate the type of printer in use. This means that the first time a user selects “print”, the title
currently in use will put up a screen to set the printer Preferences. This can be done through
the prtprefs.library.

The User Interface 21

^^1 2/y mmmmmamm User Interface Issues:User Interface Guidelines HHH

III. Help Within Titles for Users

3.1 Tutorial

All applications should provide any necessary instructions on the disc itself. This can be done at
the start if desired, but a means to escape the tutorial must be included. A link to the Help function

should be provided at all times in the title.

3.2 Help Function

Applications should provide Help screens or audio help for the user. The Escape button has been
designated as the “Help” button (see Section 2.5).

When the application does not require Help screens, bring the instruction screens back up or

deactivate the Help button function.

3.3 Error Messages

There will be a standardized set of error messages to communicate to the users when they encounter
problems such as: Personal Memory Card full, file not found. Memory Card not present, printer

trouble, etc.

This error functionality is to be provided as part of the developer support code to be distributed to

registered CDTV developers.

3.4 Title Documentation For The User

Documentation should be an integral part of the title itself. The best titles do not require hard copy

documentation.

22 CDTV Developers Reference Manual

2.1.1 User Interface Issues .User Interface Guidelines

IV. International Considerations

It is important to keep in mind that much of Commodore’s business is outside of the United States,
particularly in western Europe. It is expected that a similar sales distribution of the CDTV player
will occur.

Consequently, it is important to consider international aspects such as language, local customs and
current success stories (i.e., what is “in" in the countries you are targeting?). Titles with worldwide
appeal, which can be adapted easily to foreign environments, can expect far greater success than
those developed exclusively for a single market.

4.1 Preparing Titles for Other Languages

4.1.1 Allowing for PAL

Refer to PAL/NTSC issues in Section 2.1.

• PAL has 512 lines in interlaced modes, NTSC has 400. This requires more memory and
involves planning for a different aspect ratio.

• PAL is 50 Hz, NTSC is 60 Hz. This means that high resolution flickering is more prevalent
especially if the contrasts are too high.

• A different color scheme may be required; PAL colors do not look the same as NTSC. Color
saturation levels are particularly affected.

4.1.2 Language and Cultural Distinctions

• Many cultures are historically old and therefore rich in tradition; language is frequently a source
of pride and great store is placed in proper use of the language. Do not assume that applications
can be mechanically translated into another culture just by looking up the words in a dictionary.
In addition, pictures and symbols which are obvious to one culture often make no sense (or
worse, are insulting) to other cultures.

• All spoken words in an application need to be considered for translation to foreign languages.

• All titles should be tested with a native speaker who is CURRENTLY residing in the target
market

4.2 Foreign Language Conversion

4.2.1 Segmentation of audio tracks for translation

Segmentation of audio into pieces which can later be replaced with foreign language versions helps
greatly in facilitating the process later. This approach was taken in developing the Welcome Disc.
Note that synchronization of translated tracks with graphics which have distinct time dependencies
can cause some problems, since the translated narrative may take much more time than the original
(e.g., English to German). In printed form, most European languages occupy 25-30 % more space
than English (i.e., it takes more words to express the same thing).

The User Interface 23

2.1.1 User Interface Issues :User Interface Guidelines I

4.2.2 Appropriateness of Symbols
To avoid translation of on screen text, the use of symbols is strongly recommended (refer to Section
2.1). Note the comment above as to cultural relativity; symbols may also require translation from
one culture to another. The standard symbols (Section 2.3) should remain constant, but application
specific symbols should be examined during the translation process.

4.2.3 Length of text
If you choose to use text for keywords in menus, remember that a word in English requiring 4 letters
(such as EXIT) may require 6 or more in other languages (SORTIE in French, for example). This
is appfhftr reason to consider using symbols as opposed to keywords in menus.

24 CDTV Developers Reference Manual

2.1.1 User Interface Issues :User Interface Guidelines

Appendix A: CDTV Glossary

The CDTV glossary identifies terms which should be used by developers in building CDTV ti¬
tles. These terms should be used as part of application text or narrative presentations, or in any
documentation which refers to the subjects as noted.

The glossary is presented alphabetically by term. Each term appears in the left column with its
definition in the right column. Preferred or alternative usages of the term will be presented in bold
letters—do not use the bolding in your title and documentation.

The glossary will be updated as necessary. It is available in numerous foreign languages.

“A” button left button on the remote used to select an action; can also be referred

ac powercord

to as select button, activate button or fire button,

use powercord.

accessories CDTV player optional add-ons, not part of basic configuration (e.g.,
joystick, typing keyboard, etc.)

action user does something.

activate begin a non-interactive process such as starting a demo; (do not use
to indicate power/tuming on the machine itself).

animated graphics displayed to simulate motion.

application a CDTV application; use title.

arrow one of the directional indicators found on the remote control and the
optional keyboard; use as up,down, left .right.

audio player use cd-audio player.

“B” button the right select button on the remote control; used to return to, or back
up, to a previous choice or level.

begin User starts an interactive title. For audio, use play.

bookmark an entry in non-volatile RAM (NVR); typically used by the user to
save some information such as the status or high score of a game, or
by a title to keep track of an event, choice, or position.

boot use start or restart.

browse move in a non-linear fashion through a title.

button a raised switch found on the remote control and other accessories
except for the optional typewriter or musical keyboard where the
buttons are called keys; buttons on the screen are called symbols.

caddy carrier or case into which a cd is inserted to be played in the CDTV
player.

The User Interface 25

2.1.1 User Interface Issues .User Interface Guidelines

cd use cd-audio for audio discs, or CDTV disc for tides.

cd-audio disc compact disc with audio only.

CDTV Commodore Dynamic Total Vision; use only as an adjective, not as a
noun; The CDTV player is correct; The CDTV is not

CDTV disc compact disc specific to CDTV players.

CDTV player the CDTV system.

channel a TV channel or audio channel (right and left stereo).

choice an option available for user selection.

choose use select.

clear number remove a number that the user entered.

clear screen remove all user selections from the screen.

click use press for keys, push for buttons, select for symbols.

compact disc use cd-audio disc or CDTV disc.

compatible accessories that will work with CDTV players; other players that will

run CDTV discs.

composite video an output signal combining video and audio

composite video port socket on back of CDTV player, into which a cable is inserted to

connect a composite TV or monitor or VCR.

computer monitor alternative display device to a TV.

configuration CDTV player and the accessories that are required for a particular

tide.

connect/disconnect to plug in... unplug; applied only to hardware.

control panel the plate on the front of the CDTV player where the CD audio controls
(Fast Forward, Flay/Pause, etc.) are located.

cover the front panel piece over the slot where the personal memory card is

inserted.

cursor use pointer.

cycle loop through a variety of options.

data uninterpreted elements of information.

26 CDTV Developers Reference Manual

2.1.1 User Interface Issues . User Interface Guidelines

default pre-detennined settings; the user can override these.

device use accessory.

direction arrow one of the left/right/up/down arrows on the remote control.

directory avoid this term.

disc proper spelling to be used when referring to a cd, i.e., disc is a read¬
only medium, whereas disk is a read-write medium

disk any read-write medium, such as a floppy or hard disk.

disk drive mechanism for reading disks.

diskette can also use floppy disk

display panel time/track indicators on the front of the CDTV player.

done user has finished making a list or set of selections.

drawer avoid this term.

eject make the caddy or personal memory card pop out

elapsed time the length of time passed since the start

enter begin a user selected process or accept user input such as a number.

enter button May be referred to as the OK button.

escape avoid this term.

Escape button May be referred to as the Help button.

exit go back a level in a menu structure or to leave a context

external device something attached to a CDTV player; use accessory

fast forward move quickly through a cd-audio or through a CDTV tide.

file organized collection of information.

fire button the A button on the remote controller when in joystick mode or a
button on a joystick; used to fire in an arcade style game; only use
this term when in joystick mode

The User Interface 27

mamm 2.1.1 User Interface Issues:User Interface Guidelines

flash turn color of an object or light on and off, or alternate colors to indicate
selection.

floppy disk a read/write storage medium used in a floppy disk drive.

floppy disk drive CDTV accessory that reads and writes floppy disks.

format prepare a floppy disk to have information stored on it.

genlock a CDTV accessory which can display CDTV screens on top of video

images.

graphics information displayed pictorially.

guru not relevant for CDTV players as all errors should be trapped.

headphones CDTV accessory to individually listen to audio.

help detailed directions provided to user when requested; usually accessed

via the ? button.

help button button on the remote controller used to provide help information.

help screen the information displayed by an title as a result of pressing the help
button.

highlight display selections and options in inverse video or with a different
border or other means of differentiating it; first the user highlights a
choice with the arrow keys, then selects it with the “A” button.

hit use press for keys, push for buttons.

hook-up use connect.

hot-link means of connecting a word or phrase to all other relevant occurrences
of that word or phrase within an title. Can also use hot word.

hypercard avoid this term.

hyperlink use hot-link.

hypertext use hot word.

icon use symbol.

information data put into a format to give it meaning.

infrared the part of the light spectrum emitted by the remote control. Can be

abbreviated as IR.

input use action for verb, information for noun.

28 CDTV Developers Reference Manual

2.1.1 User Interface Issues .User Interface Guidelines

insert place a cd in its caddy or the caddy in the CDTV player or a personal
memory card in its slot.

instruction explain usage to the user.

interactive ability of user to influence or control what happens in a tide.

inverse video opposite colors such as negative and positive in the photographic
sense; use highlight.

IR abbreviation for infrared.

item that which is selected in a menu or list; see also symbol.

jack a type of connection most often seen in audio.

jewel case plastic box in which cd audio or CDTV discs may be shipped.

joystick CDTV accessory used as a remote control, usually for game playing;
also a mode option for the CDTV standard remote control.

jump go to another action, screen, symbol, etc.

key buttons on the optional typewriter or musical keyboard.

label unique name for a symbol.

landscape graphic that is wider than it is tall which is displayed on its side.

left select button A button on the remote control; can also use select button.

lesson use instruction.

light indicator on the CDTV player, green light means power is on, amber
light means disk is being accessed.

link to cross-reference non-consecutive images or words.

loop to go through a sequence and then start again from the beginning.

main audio control the play/pause, forward/reverse, stop and volume controls on the front
of the CDTV player(as opposed to those on the remote controller).

main power button the on/off button on the front of the CDTV player (as opposed to the
one on the remote controller).

memory use this term, not RAM.

menu display of available choices.

The User Interface 29

2.1.1 User Interface Issues-.User Interface Guidelines I

MIDI

MIDI in/out ports

modem

monitor

Musical Instrument Digital Interface; a standard means of connecting
electronic musical instruments to one another or to other devices, such
as a CDTV player.

sockets on back of the CDTV player, used to connect electronic mu¬
sical instruments via MIDI.

CDTV accessory enabling communication with another computer sys¬
tem via telephone lines.

alternative to TV for display of CDTV titles.

mouse

music keyboard

CDTV accessory enabling movement and selection of items on the
screen.

accessory involved in music; a piano-style keyboard.

NTSC

output

panel

North American television standard; standard NTSC resolutions are
320x200; 320x400 (interlaced); 640x200; 640x400 (interlaced); do
not use this term in user documentation.

any signal sent out of the CDTV player to an accessory such as the
signal to a printer or MIDI instrument.

use control panel.

PAL

parallel printer

pause

personal memory card

picture

European television standard. Standard PAL resolutions are 320x256;
320x512 (interlaced); 640x256; 640x512 (interlaced); do not use this
term in user documentation.

one type of printer accessory that can be connected to the CDTV

player.

interrupt a tide and hold at point of interrupt so that the tide can be

resumed from that point

a battery backed-up memory card that can be inserted into a slot on
the front of the CDTV player and used to store information.

what is displayed on the TV screen (e.g., clock picture).

play begin/start cd-audio and, in some cases, a tide.

player

pointer

ports

powercord

power button

use cd-audio player or CDTV player.

indicates position on the TV; may be an arrow or other appropriate

symbol.

outlets on the CDTV player for connecting accessories; most on the

back of the player.

cable to the source of power.

on/off button on remote control or CDTV player.

30 CDTV Developers Reference Manual

2.1.1 User Interface Issues .User Interface Guidelines

preferences the user specified settings for clock, screen centering, printer and
national language.

press applies to keys; buttons are pushed, neither is hit.

previous screen the display immediately preceding the current one.

printer CDTV accessory for obtaining hardcopy.

program use title.

push applies to buttons; keys are pressed. Neither is hit.

RAM use memory

randomize button allows audio tracks to be played in a nonconsecutive order, order
cannot be user selected.

reboot use restart.

remote controller device with buttons that sends directions to the CDTV player via
infrared signal.

remote other buttons buttons on the remote other than the A and B buttons and the four
arrow buttons e.g., Help, Play/Pause.

repeat go back to the beginning of a process just completed and do it again

reset reestablish initial settings or restart a title.

restart begin again with initial settings.

retrieve recall information from memory or disc or personal memory card.

review browse available options such as a menu, or look over previous steps
or selections.

rf converter accessory that allows switching from CDTV to TV signals when TV
is connected to the rf signal port of the player.

rf signal port one of the video output sockets of the CDTV player.

rgb signal port one of the video output sockets of the CDTV player.

s video signal port one of the video output socket of the CDTV player, sometimes referred
to as Super VHS.

screen what is displayed on the TV or monitor.

screen blanker use screen saver.

The User Interface 31

2.1.1 ■■■ User Interface Issues .User Interface Guidelines

screen saver a function that avoids displaying a static image on a TV screen for
long periods of time to avoid phosphor burnout.

scroll move through a list on the screen.

search look for information based on a selected set of criteria.

select choose from available options; the user highlights his choice with the

arrow keys, then selects with the A button.

select button indicates or activates a chosen option; the left or A button on the

remote.

self-running non-interactive title.

sequence order, such as alphabetical or chronological.

serial printer one type of printer accessory that can be connected to the CDTV

player.

set (to) define as a specific value.

skip backward/forward move non-linearly; use jump, or next or previous,

smart card use personal memory card.

software use title.

start use begin

startup screen initial CDTV display before a disc is inserted.

stereo refers to external sound system or audio output of CDTV player.

stop halt current function; opposite of activate.

switch physical on/off toggle ormove to an alternative such as another screen.

symbol graphic illustration of a choice which the user may select (e.g., track

order symbol).

television use TV.

tide CDTV application.

toggle alternate between two positions or options.

track section on a cd-audio disc; each track contains a song or sound.

track segment part of a track.

32 CDTV Developers Reference Manual

2.1.1 User Interface Issues .User Interface Guidelines I

trackball controller

typing keyboard

tutorial

TV

TV screen

user

volume

wired mouse

CDTV accessory enabling movement and selection of items on the
screen.

CDTV accessory used for alphanumeric entries and tide navigation,

use instruction.

television; acts as a display device for the CDTV player,

portion of the TV where CDTV information is displayed,

interactive participant with the CDTV player,

refers only to audio; increase and decrease,

use mouse.

The User Interface 33

User Interface Issues .User Interface Guidelines I

Appendix B: CDTV Is Not a Computer

At the Amiga Developers conference in Atlanta in the spring of 1990, a number of CDTV seminars
and forums were offered, and all of than were very well attended.

The Number One question or misconception about CDTV players that was heard from many Amiga
developers centered around one point: the notion that a CDTV player is just a modified Amiga with
a CD-ROM drive. Let’s state at tire top that a CDTV player is not just a computer with a CD-ROM
drive.

Although a CDTV player has the Amiga chip set inside and much of the functionality is based on
Amiga technology, it is very important for developers to keep in mind that CDTV players will not
be sold as a computers. The people who will be using CDTV players will probably not be computer
literate, nor will they be willing to learn a lot of computer concepts. If they wanted a computer,
they would buy a computer, not a CDTV device.

One of the central ideas behind tire CDTV device is that it will be used in a living room environment
by noncomputer people for noncomputer activities. It is not a Commodore oversight that the device
won’t have a keyboard or mouse shipped with it This is done intentionally. We are trying to appeal
to people who get easily confused by computer jargon. They may be techno-curious types, but for
the most part drey are buying an entertainment, educational, reference machine.

To put that in real terms that will be meaningful to developers, let’s look at some of the user interface
and environmental considerations.

Viewing Distance

The CDTV player will probably end up on top of the living room VCR The device will be feeding
video to a normal television set (not an RGB monitor). People will put in a CDTV disc, walk back
to their easy chair or couch, pick up the IR remote controller, and begin. This means that they will
be too far away to read small text on tire screen. Normal Amiga fonts are far too small. Normal
Amiga symbols (icons) are far too small. Anything at the edges, top, or bottom of the screen may
not be visible depending on how well their sets are adjusted. Most colors will be poorly adjusted,
so greens and blues may look the same.

All these factors mean that screens will have to be fairly simple. Use large fonts whenever text
is to be displayed on the screen. You should test all of your screens on a TV set to get an idea
how everything will look. Don’t have small items on the screen that are critical to operation of
the application. This means that you shouldn’t present too many options at once or make than too
small The “nine items on a screen” suggested limit was arrived at because when you try to put
too many items on a TV screen, they begin to get very small and difficult to see. Try not to make
options color dependent When you ask the user to select the blue symbol, he may not be able to
tell which one is blue.

34 CDTV Developers Reference Manual

2.1.1 User Interface Issues:User Interface Guidelines

IR Remote

While there will be a few users out there who will buy the optional keyboard and mice. Most
users will be using the infrared remote controller exclusively. You should be sure to design your
application so that people can use tire IR device for just about everything. This will probably mean
simplifying screens, limiting the number of options on each screen, and supplying defaults wherever
possible. During product development it is probably a good idea to ignore the mouse entirely. See
the “Remote Control and the User” section for a description of the remote controller.

The biggest hurdle to overcome when designing for the remote is positioning pointers. The remote
is like a crude mouse, at best. Since it only registers in four pixel increments, fine positioning
will be difficult Wherever possible, you should design your application so that the user can cycle
through the various options. Rather than saying “click on this” or “point and click at that”, the user
should be able to keep pressing the direction key on the IR remote until the option they desire is
highlighted, and then they can press one of the select keys.

Users will not be able to drag items easily. They will not be able to move the cursor around the screen
easily. Pointing at a small object on the screen will be difficult Pull down menus, double-clicking,
gadgets, etc., will either be impossible or difficult with the IR remote.

If you wish the user to make a choice between items or options, then build your program so that
pressing the arrow keys (direction key on the IR remote) will cycle from one item to the next. “Point
and dick” operations translate into “cycle through options until the desired option is highlighted,
then press the A key.” You should also be very clear about which items are highlighted as the user
cycles through them. Outline, frame, flash, reverse the background color, or animate the items as
they are highlighted. The users must be able to see which items are highlighted from across the
room.

You should try and make each of tire options as clear as possible (or supply help screens or audio
help). Symbols are better than text. Digitized symbols are better than hand-created symbols.
Animated symbols are better than static symbols. If you find that you have to explain to someone
what an symbol means, it would be a good idea to rethink them. If the purpose of an symbol is
clear and intuitive to the user, then it saves them frustration. It saves you time and money spent on
user instructions as well. It is important to keep in mind that as a developer of computer products
you have come to accept certain symbols and actions as intuitive. This may not be the case with an
average CDTV owner. A white rectangle with a folded comer may symbolize a test/document file
to most computer literate people, but it doesn’t mean anything to a noncomputer person. Test your
symbols on non-computer people first

When the user has an item highlighted and presses one of the select keys on the remote, it is a good
idea to have an indication that the program got the message. A “busy”, “working”, audio beep,
screen flash, fade to black, or other visual/auditory signal will prevent users from pressing the select
key over and over or thinking that the machine is broken. Most appliances in the home give almost
instant feedback. They either start right away or at least beep to indicate that they know a button
has been pressed.

The User Interface 35

User Interface Issues .User Interface Guidelines l

The Passive User

Even though a CDTV player is an interactive multi-media device, most people still would like to
sit back and have things handed to them. Given a choice between reading all about a subject or
watching a TV show that only skims over the information, most people will watch the TV. Unless
the user feels that the goal is valuable to them, they won’t invest much time or effort getting it
They also don't want to read a lot of instructions or spend too much time learning a new system.
You have to determine how much involvement to expea from the users and hopefully come to a
balance. The more that a user wants to get something horn your product, the more he will be willing
to read, learn, and interact with it If the information or reward is great enough, people will go to
great lengths to get it Qust look at MS-DOS and how much effort it takes before someone reaps the

benefits).

If the user feels only a casual interest then the more obstacles you put in his way, the more frustrated
the user will feel. In the case of the CDTV player an obstacle might be a long book of instructions,
special keys to memorize, unique actions to perform, etc. Forcing the user to draw his chair closer
to the screen in order to read or see something small is an obstacle, forcing him to do a lot of
fine adjustments with the remote (such as fine positioning a pointer in a small area) is an obstacle.
Perhaps the biggest obstacle would be requiring him to buy or have a keyboard or mouse.

Compare how difficult it is learning to drive a car with using a crepe maker. Most people will spend
months learning to drive, stand in lines and take tests to get their license and spend thousands of
dollars on cars because they see that the rewards are great. But even if you were given a crepe
maker as a present, it ends up in a closet because it is just too much of an annoyance to make batter
and clean the thing. If you feel that your particular application will be important enough to the user,
you can make it as difficult as you like. If, on the other hand, you are offering them a crepe maker,
then it better be self-cleaning.

You should try to build “time-out” features into your applications. In other words, if there is no
input from the user after a few minutes, the program should revert to a self-running mode. This
is particularly important at the beginning of a session. It would probably be a good idea to have
your startup screens offer the choice of beginning right away or going through a tutorial. If nothing
happens after a minute or two, jump right into the tutorial. Look at the way arcade game machines
function. A mixture of self-running demos and instruction screens are constantly moving on the
screen until someone puts in a quarter. People would much rather sit back and be shown how to use
a thing (a few times if necessary) before they jump in rather than have to read printed instructions
and then be dumped into something unfamiliar.

Don’t be afraid to steal ideas from household appliances. How do people program a microwave
ovoi? A stereo? A VCR? (Keep in mind that all over the world there are VCRs flashing
12:00...12:00...12:00 because setting the clock is just too much trouble or is too confusing.) How
do people use a remote control device to watch TV? Do most people enter a channel number on the
keypad, or isn’t it just easier to press the up or down buttons a few times?

36 CDTV Developers Reference Manual

2.1.1 User Interface Issues .User Interface Guidelines

Summary: Design Considerations Unique to CDTV Applications.

Television (TV)
Televisions are not the same as computer RGB monitors. Television is an interlaced, overscanned
medium. What looks good on a monitor, may look terrible on a TV set in the home. Some colors
bleed, others do not stay “true”. View your screens on a TV set before you commit them to CDTV
disc. No matter how good your application is, if it doesn’t look good on the home TV set then the
users will be disappointed.

Use large fonts whenever text is to be displayed on the screen. Do not use small items on the
screen that are critical to the operation of the application or present too many options at once. The
suggested limit is nine items on a screen because when you put too many items on the TV, they get
very small and difficult to see. Options that are color dependent are confusing and the user may not
be able to tell which symbol is blue, preventing the proper selection. Test all of your screens on a
TV to get an accurate impression of how it looks.

TV Imagery

Issues related to 6 to 8 foot viewing distance and TV resolution...

Fonts
Just about any font will work if it isn’t too fancy in the first place. In completely unscientific tests
anything below 20 point type becomes difficult to read from more than ten feet. Also, broadcast
television character generators almost always use anti-aliased fonts with a neutral colored outline.
Ideally, the outline color is halfway between the character color and the background color. Outlines,
borders, and drop-shadows greatly improve readability. Pastel colored fonts work better than bright
or primary colors. Off-white works better than pure white. Yellows, greys, and pale blues seem to
work best.)

Fonts On Order. We are commissioning a few sets of fonts in various point sizes. They
will be designed specifically for the CDTV support software and should be freely available
to registered developers.

Colors

Colors should be subdued rather than bright (bright colors tend to “bleed” on poorly adjusted TV
sets.) If you are using a paint program like Deluxe Paint from Electronic Arts that have color values
in a range from 0 to IS we strongly recommend that no value go above 12 or 13. The only safe
way to test colors and color combinations for display on an NTSC or PAL TV is with a waveform
monitor. Maximum values 85% IRE. The best advice is to keep the color values below saturation
and look at the results on a television set.

Nationality and User Preferences Selection

While many people will adjust the Prefs (particularly nationality settings), most people will never
touch them (if it ain’t broke don’t fix it). However, certain adjustments will have to be made by the
user upon power up or after a loss of power. We will try to make the transition between Preferences
selection and normal use as seamless as possible.

The User Interface 37

User Interface Issues .User Interface Guidelines I

Television Sizes

Some people will be using small TV sets. While we might have colored borders around the edges
of screen developers should work within a “safe” area.

38 CDTV Developers Reference Manual

2.1.1 User Interface Issues .User Interface Guidelines

Appendix C: IR Remote Control Description

Refer to the Developer Notes for a complete description of the key codes generated by the Remote

Control.

On the left side of the remote is an eight-way direction key, which is used to move pointers on the
screen, make selections, etc. There is another button on the remote for toggling how the remote
direction key operates, either as a joystick or a mouse, when in the joystick mode, the direction
and fire button signals sent to the player will be in standard joy, four button, eight-way form.
When the remote is in the mouse mode, intuition mouse movement calls will return values in four
pixel increments rather than normal Amiga one-pixel increments. This was done, primarily to
enhance the responsiveness and speed when moving a pointer. Developers should try and write
their applications to trap for both modes if possible and notify the user to press the joy/mouse button
to change modes if necessary. A simple “press left selection button to start" message to the user
will let you determine what mode the remote is in.

On the right side of the remote are left and right selector keys which are the equivalent of the left and
right mouse buttons in mouse mode. In joystick mode, only the left selector button will function as
a fire button.

Next to the selector keys are two buttons for adjusting the headphone volume up and down and
a power button for turning the player on and off. Next to the volume controls are buttons for
controlling all the audio functions of the CDTV player (rewind, fast-forward, play/pause, and stop).

Above the audio control buttons are three buttons, first a genlock button for use with the optional
genlocking accessory. This button will cycle the CDTV player through the three genlock modes:
source only, mixed source and computer, and computer only. Next is a button for switching between
CDTV and normal TV viewing (this toggles the RF modulator and light on the player front panel).
Finally is the joystick/mouse toggle button.

To the right of the direction key are 12 buttons (10 buttons numbered zero through nine, an escape
button, and an enter button). They will be laid out in the same fashion as a telephone keypad
excepting that the escape button is to the right of key 3, the zero button to the right of the 6, and
the enter button to the right of the 9. These keys will send the same values as those found on the
Amiga numeric keypad.

As a positioning device any remote unit will be awkward to use for fine adjustments (even a mouse
is not completely intuitive). For that reason we should not have gadgets for resizing, dragging, etc.

To avoid forcing the users to precisely position a pointer (and going along with some of the TV
specific imagery rules) we felt it would be better to cycle through any list of selectable options.

We have established a set definition of any key functions (such as help or return to main screen).
More thinking is required on how a user will use the IR device for scrolling through lists, controlling
text speed and size, etc. There may come a time when an application requires some form of text
entry and not everyone will own a keyboard.

The Escape button’s function in all cases is to bring up some kind of help screen. This help screen
could be as simple as an symbol telling the user to put in the welcome disc (this would be the only
thing handled by ROM.) Developers could have the Escape button activate a generic help screen of
their own, give the user the option of going through a demo or tutorial section, refer the user to their
manual, bring up contextual help screens, or have special options such as “return to top", “return to
previous screen”, “jump to another section”, “jump to another mode”, etc.

The User Interface 39

2.1.1 User Interface Issues .User Interface Guidelines

The Return button is used to make selections or activate an option in just about every case. In some
cases (title dependent) the select or A/B buttons might perform this function for example if a title
is Amiga mouse dependent (which we do not encourage.)

The arrow buttons are always used to move around. Move from symbol to symbol, move through
a list, move to another selection, etc.

40 CDTV Developers Reference Manual

2.12 User Interface Issues designing Screens for CDTV Multimedia

Designing Screens for CDTV
Multimedia

Introduction

The success of a CDTV title depends in large pan on the quality of its user interface. Attractive, easy-
to-use applications are well-received, often demonstrated, and generally have higher retail sales.
For this reason, it is important for CDTV designers and artists to understand the fundamentals of
screen design and layout

This article discusses some of the basics of screen design. None of the following suggestions
is sacred, as applications often dictate special conditions. Any particular application, with good
reason, can easily violate any or all of these guidelines. For example, some of the best computer
games contradict design suggestions in this article because the game play itself is unique and some
of the guidelines are inappropriate for the game play. However, good reasons for breaking these
rules do not include poor development practices such as lack of sufficient alpha or beta testing,
incompetent programming, or amateurish graphic artwork.

By understanding the following guidelines, developers will have a framework within which they
can decide how to bend the rules, if necessary, without harm.

Designing Screens

There are at least two major factors to take into account when designing graphic screens for
multimedia applications: Usability and Aesthetics.

Usability

Usability refers to how easy or intuitive the screens are to operate. Users should be able to quickly
figure out what they are supposed to do, and how to do it

Aesthetics

The aesthetics of screen design refers the screen’s visual appeal, in terms of eye pleasing, artistic
qualities appropriate to the type of application.

While usability and aesthetics can be considered separately, they are interrelated. A screen that
may initially please the eye will not do so for long if the user gets frustrated trying to figure out
how to operate it. Likewise, a screen that is not visually appealing will be unimpressive, no matter
how easy it is to use. This article looks at four broad areas: Screen Layout, Color and Motion, Text
Readability, and Consistency.

The User Interface 41

2.12 User Interface Issues designing Screens for CDTV Multimedia

Screen Layout

The layout of a computer graphic screen has a great impact on ease of use and visual appeal. Several
general rules should be kept in mind.

Scanning Patterns

When users first see a new screen they usually scan it quickly in a very definite pattern to get
arqnaintftri with it Normally the user starts at the upper left comer of the screen, scans quickly
down the screen vertically, and ends at the lower right comer. Scanning helps one get visually
oriented before settling into reading text or performing interactions. This is similar to scanning a
printed page for paragraphs and headings before actually starting to read the text It follows the
normal top-down, left-to-right reading pattern on a printed page that is common to all Western

languages.

Start scanning

F I I

V
V

~-X
End scanning

Screen designers can exploit this scanning pattern to facilitate the user’s interaction with the screen.
For example, since the upper left comer is the user’s starting place, it is a good place to put important
orienting information or instructions (such as a screen title or a prompt for user action). The lower
right comer of the screen is a good place to put the most likely final action for the screen, such as a
"Continue," "Next," or "Return" button because it is the last place a user is likely to scan.

Choose One:

© ©
G> ®

Zones and Regions
Between the screen’s upper left and lower right comers is the space for user interaction. Users tend
to scan down the screen vertically to get an idea how the screen is organized, so it is helpful if the
screen is broken up into two or more vertically arranged "zones," extending horizontally across the
y^n, These zones can be thought of as functional regions where related choices can be made or
where text instructions can be placed.

42 CDTV Developers Reference Manual

2.1.2 User Interface Issues designing Screens for CDTV Multimedia

Organizing the screen in horizontal zones, both visually and functionally, helps the user to quickly
locate the desired area of the screen. After locating the appropriate zone, the user can then easily
read across the zone and focus on the details of information or interaction inside the zone. For
example, a screen title placed in the upper quarter of the screen can be thought of as occupying a
functional zone. Likewise, a row of navigational buttons across the bottom of the screen comprise
a zone where related functions (Main Menu, Help, Return, etc.) are easily found.

The World: . .
_ _ JTffiiph-yfiuI d£S]jH3ti£iL_

Werfij rHsTl flex!!

The Grid
The grid is a basic tool for all graphic design because it is indispensable for arranging and balancing
graphical elements on the screea These elements include text, images, and interactive buttons.
Grids can be of any reasonable dimension, most commonly 3 x 3, 4 x 4, and 5 x 5, as well as

combinations such as 3 x 4, etc.

Not only do grids contribute to the visual balance of a particular screen, but using a common grid
for all screens in an application maintains a consistent visual style across the entire application.
Such consistency of style is well-appreciated by users. By designating some areas in the grid for
interactive functionality and balancing them against "non-interactive" elements such as images,
titles, or text, a pleasing, flexible arrangement can be created and maintained (with modifications)
across an entire series of screens.

The User Interface 43

2.12 User Interface Issues .Designing Screens for CDTV Multimedia

-1-t-1—
jvienul | i i Qej I INCM |

Some developers and programmers may initially object to using a grid because it seems inflexible.

However, professional graphic artists regularly use grids because they actually increase design

flexibility. Grids provide die artist with a structure to follow for consistency, and a structure to

diverge from ("play off") for emphasis and artistic license. The grid is a very valuable tool for

creating a well-balanced, visually pleasing layout

Attracting the Eye with Motion and Color

The user’s eye will be attracted to different areas of the screen in varying degrees, depending on

factors such as motion and color.

Motion

The user’s eye is most strongly attracted to any morion on the screen. This is a physical/biological

response of die human eye to movement and is often exploited for advertising purposes in television
commercials, moving signs, etc. A multimedia designer can use this reaction to movement to draw

the user’s attention to a specific area of the screen.

For example, a new screen might be introduced by a spinning tide that lands in the upper quarter

of the screen. This will not only give the screen visual appeal, but will also draw attention to the

tide, thereby helping to orient the user. Another example is a "Return" button that starts blinking

after a timeout period to attract the user’s attention to the logical button, thus guiding her through

the application.

MAIN MenJ

(Animation)

On the other hand, unnecessary or excessive motion on the screen can be very distracting. If a text

screen has a decorative animation playing in one comer, the text will be harder to read because the

user’s eye will be continually distracted away from the text

44 CDTV Developers Reference Manual

2.12 User Interface Issues designing Screens for CDTV Multimedia I

Incorrect use cf Animation^

TITLE *
text lea text tea

Text Text Tea Tea Tea
Text Tea Tea Tea Tea

Tea Tea Tea Tea

Text that is moving is also mote difficult to read. If you want to call the user's attention to some
text, it is usually better to flash a border around it for emphasis. If the text is very short (a few
words) you might blink it very slowly with plenty of time between blinks to read it

Color
Color is another major attraction for the eye. In general, the hotter colors (reds, yellows, pinks
etc.) attract the eye and tend to come forward on the screen, while the cooler colors (blues, greens,
browns, etc.) do not attract the eye and tend to recede.

Consider a dark gray circle on a light background. This will most likely be perceived as a hole or
depression. A light yellow circle on a dark background, however, will most likely be seen as an
object in the foreground over a dark background.

In addition, the lighter and mote highly saturated the color, the more strongly it will attract the user’s
eye. Therefore while blue is not naturally a hot color, a brilliant blue (light and highly saturated)
can overpower a muted red (dark, low saturation). If the brilliant blue is placed as text on the muted
red background, the viewer’s eye may feel a tension and fighting between the colors on the screen.
This is because a receding color (blue) is being placed on top of a color (red) that naturally tends to
come forward.

The area of strongest attraction for the user’s eye is normally the area of highest contrast on the
screen. This occurs at the borders between the lightest and darkest areas (or hottest and coolest
colors) where the difference is greatest. For example, if there are only two colors on the screen, say
a rich lemon yellow (hot) and a dark grayish blue (cool), the border area or edge where they touch
will attract the user’s eye. To attract the user’s attention to an area of the screen, the designer could
use a small box containing stripes or speckles of yellow on the blue. This will provide an area of
high contrast between the two colors to attract the user’s eye.

The User Interface 45

2.12 User Interface Issues .Designing Screens for CDTV Multimedia I

Area of strongest attraction.

Background and Foreground colors

When choosing colors for screen display, it is important to consider the foreground and background
colors carefully. Background colors should, in general, be cool, daiker, less-saturated colors that
recede and do not vie for the user’s attention. These cooler background-type colors include olive
greens, grays, blues, browns, dark purples, and black. Conversely, foreground colors can be hotter,
lighter, and more highly-saturated colors Gemon yellow, pink, orange, red) that tend to come forward
on the screen and attract the user’s eye.

Color Coordination

Contrast area

The visual appeal of a screen is determined in large part by the colorfulness of the screen. However,
this does not mean that the more colors the better! The key to using color effectively is using it
conservatively. In fact, the most visually appealing screens often use only two or three hues (pure
colors such as red, orange, yellow, green, blue or purple) and vary the shades (brightness) of those
hues. In addition, black, white and gray can always be used.

For example, a color combination of yellow and blue can be very attractive if the designer uses two
or three shades of blue, two or three shades of yellow, and black, gray, and white. This gives the
artist a good selection to choose from, yet maintains a visually pleasing color harmony. In this way,
the screen’s color coordination can be established and then creatively modified.

If, on the other hand, the same screen were designed using six different hues (green, blue, yellow,
orange, red, purple), the confusing mixture would likely distract and repel the user.

Color Blindness
Multimedia screen designers should remember that an estimated 8% of the adult male population
is red/green color blind. Therefore avoid red/green color combinations such as red text on a green
background (or vice versa), especially when the reds and greens involved have similar luminance
(brightness) values.

One technique that can help designers select the proper luminance of different items on the screen
is to design screens in black, white and gray (to test the readability and overall design), and add
colors later while maintaining the original luminance values.

46 CDTV Developers Reference Manual

2.12 User Interface Issues designing Screens for CDTV Multimedia l

Text Readability

The readability of text is of primary concern to the multimedia screen designer. Easily readable text
is essential to a successful application. Text that is hard to read will not only annoy and frustrate the
user, it will also lessen the overall impact of the tide. Some basic elements of readability follow.

All Upper Case vs. Upper and Lower Case

Words in upper and lower case are more easily read than those in all upper case. All upper case
characters should be used occasionally, and only then for the purposes of emphasis.

THE REASON UPPER AND LOWER CASE TEXT IS EASIER TO READ THAN ALL
UPPER CASTE TEXT IS THAT MOST PEOPLE QUICKLY RECOGNIZE WORDS BY
SHAPE, NOT BY READING EACH LETTER. THEREFORE, SINCE LOWER CASE
LETTERS CONTAIN ASCENDERS AND DESCENDERS, THERE IS MORE VARIA¬
TION IN THE WORD SHAPES, AND THUS THEY ARE EASIER TO RECOGNIZE.

The reason upper and lower case text is easier to read than all upper caste text is that most
people quickly recognize words by shape, not by reading each letter. Therefore, since
lower case letters contain ascenders and descenders, there is more variadon in the word
shapes, and thus they are easier to recognize.

Flicker

Since CDTV applications are to be viewed on an interlaced display (television), die designer
must take into account a phenomenon known as "Interlacing flicker," or commonly just "flicker.”
Flickering characters are seen to "shake” on the screen, and this is highly objectionable to a user
trying to read text Flicker is most noticeable on horizontal lines of single pixel height between two
sharply contrasting colors (e.g., a bright white line on a red background). Notice the flicker on the
weather maps of local television news programs. Often the smaller characters and thinner lines on
these weather maps seem to "shimmer" or "shake" over the map’s background. Sometimes flicker
is most noticeable in an area of the screen in your peripheral vision, that is, if you are not looking
at it directly. In addition, flicker is considerably more apparent in PAL mode, since PAL runs at a
slower screen refresh rate (SO Hz, as opposed to 60 Hz for NTSC).

Flicker can be dealt with by at least three methods: anti-aliasing, drop-shadows, and avoiding
single-pixel high lines. Anti-aliasing helps smooth out the flickering of the high-contrast edges
between colors. Drop-shadows help pull the characters out away from the background, and give a
hard black edge against which to better recognize text on the screen. Avoiding single-pixel high
lines in contrasting colors removes the problem of flicker altogether.

Anti-aliasing is the process of inserting transitional colors between two highly contrasting colors
(e.g., a middle gray pixel between a white area and a black area, or a medium brown between a
lemon yellow and a dark purple.) This transitional color minimizes the apparent flicker on the screen
and greatly reduces eyestrain. Anti-aliasing helps smooth out the flickering of the high contrast
edges between colors. How anti-aliasing is accomplished varies depending on the software tools.
With some graphics programs fonts and brushes can be automatically anti-aliased, saving many
hours of manual retouching.

The User Interface 47

2.12 User Interface Issues designing Screens for CDTV Multimedia I

Drop shadows can usually be created by picking up the text as a brash, stamping it down in black
or gray to create the shadow first, then changing the brash back to its original color and stamping
it back down on top of the shadow, but slightly offset Drop shadows help pull the characters out
away from the background, and give a hard black edge against which the user can better recognize
the characters and words.

To avoid single-pixel high horizontal lines, the simplest method is to use low-res graphics (200
vertical lines of resolution). This resolution mode may not be of sufficient quality for a particular
graphic image. If the graphic is high-res (400 lines of resolution), the single-pixel high lines can be
retouched by hand.

Color Choices
Choosing the right colors for the user's environment is very important to the look and usability of
a CDTV title. There are significant differences in the way computer monitors and color televisions
display colors. Images that look crisp and clean on a computer monitor can easily become "messy,"
muted, or blurred on a television. It is important, therefore to tone down the hottest colors (especially
red), and to look at your screens often during the design process on a home color television or a
composite input

For example, a bright red might look very good on the designer’s computer monitor, but on a
television, that same red could be too hot, and bleed or smear red to the right.

Another design consideration is whether the program will be running in Europe on a PAL system,
in North America in NTSC, or both. PAL and NTSC differ in their luminance values; NTSC tends
to display screens significandy brighter (about four shades brighter). An application created on a
PAL system may display colors much differendy on an NTSC system. This is especially significant
when it comes to background colors, which may appear to be too bright in NTSC, or even a totally
different color. A nice rust-brown background in PAL, for example, may show up as an intolerably
light yellow in NTSC.

Consistency

Consistency refers to a common look and feel across various screens within a single application or
a series of applications.

48 CDTV Developers Reference Manual

2.12 User Interface Issues designing Screens for CDTV Multimedia

Necessity of Principle
Consistency, as a principle, is extremely important when designing multimedia screens, for both
aesthetic and functional reasons. Aesthetically, a multimedia application that has a consistent
design in terms of colors, style, and layout will be seen as a much higher quality program than
one that uses a variety of backgrounds, colors, and layouts across multiple screens. Functionally, a
roncictpnt design helps the user to quickly learn to operate the user interface and navigate through

the application.

A program that maintains a tight consistency gives the user a feeling of unity and overall vision of
design, which lends a valuable sense of credibility and integrity to the application. An inconsistent
look within the application forces users to continually reorient themselves at each screen, and
thereby distracts them from the subject or content of the program. Consistency also cuts down
drastically on the time spent developing screens, since the common elements, such as backgrounds

and buttons, do not have to be continually created.

Consistency can be applied to the look of an application through colors, button design (3-D, drop
shadows, etc.), button placement (bottom row, screen comers, etc.) background textures (paneling,
stucco, tiled, etc.) and so on. It is worthwhile to take some time and experiment with various
graphic styles, decide on one style and then stick with it instead of continually redesigning and

laying out each screen anew.

The other aspect of consistency is the method(s) of interaction (scrolling list arrows, on-screen
keyboards, Return buttons, etc.). By being consistent in how the user interacts with the program
from screen to screen, the developer allows the user to move through an application much faster. This
especially applies to items such as navigation buttons. If these items (Main menu, Return, Help, etc.)
are inrnngistftnt, the user’s progress through the program is impeded. Users become accustomed
to button locations, methods of interaction, etc., and if these change within an application it will
confuse the user, slow him down, and create frustration.

When to Break the Rules

The number one priority of an application is ease of use. All else is sacrificed on this altar including
consistency of design. When adhering to a particular consistency of screen design makes an
application more difficult to use, it is time to break the design rules in favor of ease of use.

Imagine an application in which the lower right comer of the screen contains a button labeled
"Next,” to advance the user to the next screen in a sequence. The application is designed to blink the
button after thirty seconds to indicate that it is waiting to be pressed. However, on one of the screens
the user is supposed to make a choice before moving on to the next screen. If the thirty second
rule is blindly adhered to in order to be consistent, the "Next" button may start blinking before the
user has a chance to consider the choices. This could result in steering her into an incorrect action
(pressing the "Next" button rather than one of the choices). In this case, the thirty second rule for
the "Next" button should be broken in favor of blinking the instructions to the user about making a
choice. Once the user has made a choice, the thirty rule for the "Next" button can be reinstated.

Ironclad adherence to consistency is an extremely common mistake. Remember, the most important
consideration is ease of use, not consistency of design (and certainly not ease of programming).

The User Interface 49

2.12 User Interface Issues .Designing Screens for CDTV Multimedia

Conclusion

Good screen design and layout contributes to the overall success of a CDTV title. Visually appealing
and easy to operate screens are well received by users and subsequently by all those involved in
marketing and selling the product

However, good screen design is not arrived at by chance or good intentions alone. It is only
possible if the designer understands the natural tendencies of users to scan screens, and react to
color, movement and layout and if the designer makes use of these natural tendencies to help the
user through the application.

If your testing results or reviews indicate that a user has trouble understanding or operating a screen,
check your screen design for the basic principles of layout and interaction. If you design with the
users in mind, they will surely enjoy using your application and will recommend it to other CDTV
owners.

50 CDTV Developers Reference Manual

2.13 User Interface Issues .Localizing CDTV and CDTVApplications I

Localizing CDTV and CDTV
Applications

Consumer products are a good example of localized products. The car you drive, unless you made
a special purchase arrangement, is localized to your measurement system and driving standard. The
same holds for electronic components like stereos and televisions. From the labels on the front to
the power supply in the back, die unit is ready out of the box for use in your country.

Localization for computer products used to be an option, now it is a necessity. This is true for
Commodore because the majority of Amiga sales are in Europe and especially true for CDTV
because it is a consumer product mote than it is a computer product Initial CDTV sales are
expected to follow the same European sales pattern as Commodore’s computers and so CDTV has
been designed with localization in mind.

All CDTV units contain both PAL and NTSC crystals, and a universal power supply. The power
supply is capable of detecting whether 1 lOv or 240v, and 50Hz or 60Hz is required. PAL and NTSC
selection, however, can only be done by cutting or connecting jumpers on the motherboard. Future
revisions of CDTV will include a hardware switch on the outside of the machine to sleet PAL or
NTSC.

CDTV system software is localized by user selection of settings on the Preferences screen. Appli¬
cations should then present all messages in a manner consistent with the Preferences settings. This
is the runtime processing for localization.

CDTV applications are localized at development time by translating all application specific text and
documentation into the user’s language. In addition, CDTV applications offer unique localization
challenges due to the inclusion of speech with most applications and the predominance of symbols
over text

CDTV Preferences

The CDTV Preferences screen allows the user to set two Preferences items dealing with localization:

Language
Currently, the user has a choice of fifteen languages

CDTV Preferences Language Choices
American English English German
Spanish Italian Portuguese
Dutch Norwegian Finnish
Japanese Chinese Korean

Time
Either AM/PM or 24 hour.

French
Danish
Swedish

CDTV applications should check the user’s Preferences settings and change all relevant features to
support those settings.

The User Interface 51

2.13 User Interface Issues '.Localizing CDTV and CDTVApplications

Translation

Translation for CDTV applications covers four areas:

1. The application screens.

2. The spoken portion of the application.

3. Cultural issues and symbols associated with the application.

4. The application documentation.

One issue of translation is that English text tends to expand when translated into European languages.
The increase can be as much as 30-50%. Naturally, the reverse is true. Whatever your original
language, you should make provisions for this when coding your application.

Another issue is who does the translation. You should use a translation company experienced in
translating technical material.

Applications like dictionaries and encyclopedias should not even be translated. It’s far easier (and
cheaper) to license an existing dictionary or encyclopedia already produced in a country than to
attempt translation of a 21-volume encyclopedia.

The Application Screens.

Most CDTV screens should have minimal text This is beneficial in two ways.

• The first is that CDTV applications should be intuitive and text isn’t intuitive; pictures and
symbols are.

• Hie second, and most important from a localization standpoint is that less text means less
translation.

Any text on an application screen is subject to translation. This includes dates, times and numeric
values. For example, fractional values are expressed differently in Europe than in the United States.
Your application should present all relevant quantities in the correct format for the user.

Screen layout can be adversely affected by the translation process. Do not code your application’s
screens to rely so heavily on text being a particular length that the deletion or addition of words will
ruin the look of the screen.

The Spoken Portion Of The Application.

This is a crucial part of any translated application. The large capacity of a CD allows the CDTV
developer to include spoken text and music that can greatly enhance an application. However, that
enhancement quickly becomes a detraction if poorly done.

Spoken text translation has two elements—the translation of the text itself and the manner in which
it is spoken. When the text is translated, you must not only use the correct phrases for that particular
language, you must also use the correct phrases for the CDTV technology. Translation is not always
word for word. In fact, some words may not even be translated.

How the speaker sounds is as important as what is said. The speaker of the translated text must
have the correct accent for that language. You don’t want the German text in your application to be
spoken with a Japanese accent Also, don’t use the standard Amiga narrator.device —its phonemes

52 CDTV Developers Reference Manual

2.13 User Interface Issues . Localizing CDTV and CDTVApplications

are not suitable for international speech. The best approach is to use a professionally trained narrator
or speaker who is fluent in the target language.

Avoid long sentences which get even longer when translated. Use short phrases which lend
themselves well to translation. Another thing to avoid is tight time synchronization between displays
and spoken text The expansion of translated text will most likely throw off the synchronization

and you will have a lot of recoding to do.

There are translation service centers which do varying degrees of translation from translating written
text to finding an actor to speak the text and sending you a tape to even sending the entire translated

text and narrative back to you on a SCSI disk.

Cultural Issues Associated With The Application.
Cultural references and symbols that are acceptable here, may not be in other countries. For
example, instructing children to “look left before stepping into the street” is fine for the United
States, but dangerous for the United Kingdom.

The symbols used in an translated application should make sense for the country involved. The
mailbox symbol people are accustomed to in the United States—a box with a rounded top and
a small door—may mean nothing to a European or a Canadian. Use symbols appropriate to the
country. The same holds for place names on maps. Even the meaning of colors, such as amber for
warning in the United States, is subject to cultural differences.

A good translation company will go over cultural issues with you in addition to translating your

text

The Application Documentation.
The entire text of the application’s documentation will be translated into the target language(s). The
same factors involved in coding the application hold for the documentation. Fortunately, CDTV
applications do not have a lot of documentation to begin with, so this will not be an extensive
process.

PAL vs. NTSC

PAL screens have 256 scan lines non-interlaced and 512 scan lines interlaced as compared to 200
and 400, respectively, for NTSC. It is important that applications be tested under both standards to
determine if changes are required to the screen layouts to make them compatible.

Color rendering is different between PAL and NTSC. Avoid using intense, highly saturated colors.
If possible, test your NTSC applications on a composite PAL monitor and TV set, and vice versa.

CDTV Glossary

The CDTV glossary that appears in the CDTV User Interface Guidelines lists CDTV and CDTV-
related terms and their definitions. Some of the definitions include the recommended usage of
the term in CDTV applications. For example, the definition for external device states that it is
“something attached to a CDTV player” and recommends that it be referred to an “accessory”.

The glossary has been translated into a number of languages and is available from Commodore.

The User Interface 53

22.1 CDTV Title Issues :CDTV Title Guidelines

CDTV Title Guidelines

A CDTV title is not simply an Amiga application running in a different box. The CDTV player
imposes certain restrictions on a title—no m^rns and large icons, for example, and provides certain
benefits—large storage capacity and digital audio. The wise CDTV developer respects the former
and takes advantage of the latter.

The list below gives you, the developer, a quick reference to the do’s and don’ts of CDTV titles. It
contains rules and common sense advice. They are broken into two groups, minimum requirements
and quality standards.

Minimum Requirements
The minimum necessary to be an acceptable CDTV title.

Quality Standards
To get into people’s homes, you need to do more than the minimum. These will help you make
the trip.

LEVEL 1 QUALITY: MINIMUM REQUIREMENTS

1. No program crashes. The title should not crash, guru or otherwise cease to be functional. Test,
retest and test again till you are sure your title is robust.

2. No logic or flow errors. The title cannot take a path other than the one requested or expected
by the user. For example, if the user asks for a map, but instead gets a picture of a tree, a logic
or flow error has occurred.

3. All images presented should be free of error and look clean. For example, a title should not
have a garbled picture or a video sequence that exhibits solarization, i.e., a color picture that
looks like a negative.

4. No low quality images. All still images should be high quality, preferably digitized interlaced
HAM images. Drawings or animations should be detailed and free of major color banding.
All still images should be ovetscanned unless a conscious effort is made to provide a colored
border.

5. User interface. The program should follow generally accepted CDTV interface rules including-

a) A button for action, B button for backup, arrow keys move in direction of arrow.
b) Single click to select an object
c) Use highlighted hitboxes rather than a pointer where possible.
d) Highlighted hitboxes should be accessible by cursor keys in any direction.
e) If a pointer is used for products with invisible hot boxes or for special purposes such as

coloring, the pointer should change when it is over an invisible hot box and be in a form
relevant to the title (paint brush, wand, etc.).

f) Numbered items should allow use of the numeric keypad on the controller.

The User Interface 55

22.1 CDTV Title Issues :CDTV Title Guidelines

g) Selectable items should stand out (e.g., 3D buttons) from non-selectable items, and they
should give audio/visual feedback when selected.

h) Selectable items should give appropriate, consistent, and predictable results.
i) There should be no references to a computer keyboard (e.g., FI key).

6. The title should look good on any television. This means you should buy a cheap television
fortesting.

7. There should be no signs of AmigaDOS. Examples include the AmigaDOS cursor, Workbench
screen, system requesters, sleep icon, pull down menus, flashing title bar, front/back gadgets,
or jargon (x memory free, loading next module, etc.).

8. Efforts must be made to reduce perceived boot-up time. The titlescreen should appear within
five seconds of the appearance of the CDTV Interactive Multimedia logo. (See Discis ’ products)
The program should show a title screen before doing anything else. It should not show CLI,
Workbench, or any pointer.

9. It must have a screen blanker tied to preferences. We recommend the screen blanker supplied
as part of the OS.

10. Titles must work under AmigaDOS 1.3 and 2.0 in both NTSC and PAL. Programs should be
able to successfully pass enforcer and mungwall testing.

11. The program must be designed for use on a PAL or NTSC TV, which means care must be taken
in regard to all graphic elements (fonts, symbols, pictures, animations, video) with respect to
gj?/-., style, color combinations, and contrast Test your titles on those two environments, not
just with a monitor and one of the two standards. Specific suggestions include:

a) Fonts should be simple with no thin lines, anti-aliased, easy to read on a television and at
least 20 point size.

b) Text should generally be highly contrasted to its background.
c) Text should have borders or drop shadows to make it more readable.
d) Don’t use pure colors (R, G, B values should be less than or equal to 13 out of a range of

0-15) because they bleed on television sets.
e) Be careful of the colors used as some colors show up very differently on NTSC versus

PAL. For example, deep red in NTSC comes out pale pink in PAL. The only way to find
this out is to test on both systems.

f) Avoid stark contrasts when using thin horizontal lines since this will not look good in an
interlaced medium (TV), and avoid single pixel horizontal lines entirely.

g) Do not base instructions solely on color, i.e„ don’t state “Pick the orange button” since TV
sets will be adjusted differently. This could also be a problem for colorblind users.

h) There should be no more than nine selectable (by cursor or by pointer) items on a screen
unless the individual items are recognizable because they are part of a set (i.e., alphabet,
numbers, states). Nine items fit well with the font size required for television.

12. Products must not substitute repetitiveness for depth by reusing the same elements in different
places. If a product is perceptually redundant, it is boring. For example, using a passage from
Beethoven’s Piano Concerto No. 5 as an example of his music, and as an example of how a
piano sounds, and as an example of a piano concerto is a lack of depth.

13. Eliminate all spelling and grammatical errors; people will not want to use a product, especially
an education product, if they cannot trust something elementary like its spelling. Run your

56 CDTV Developers Reference Manual

22.1 CDTV Title Issues :CDTV Title Guidelines

text through a spell checker and a grammar checker. Some of these titles are available in UK
English or American English only, and these are acceptable, at least for the initial shipment

14. Programs should reboot when the disc is removed unless the program disc needs to be removed
for the product to be usable (CD-Remix). The program should reboot when the eject button
is pushed, and the reboot should occur even if the disk is being accessed or Amiga audio is
playing.

15. Sound quality should match the title requirement Use Amiga sounds for audio feedback;
CD-DA for game background, dramatic intro music and other sections designed to evoke an
emotional response. All sounds should be clear and free from hiss or other extraneous problems.
Speech must be ungarbled and unclipped and digitized at a reasonable level or be CD-DA.

16. Volume levels of speech, music, and sound effects should be uniform throughout the product
All audio must come through both channels unless there is a compelling reason to do otherwise.
Note that compelling does not mean being unwilling to take the time to code so that the sounds
comes through both channels nor does it mean that your authoring system only works with one
channel. Compelling does mean trying to add depth to the sound by having one person come
through the right channel and another through the left channel.

17. Interrruptability. All titles need to be interuptable at any time, including title and credit screens,
introduction, during accesses, or animations.

18. Products must use preferences for language selections. Unless the language chosen in prefer¬
ences is unavailable, the user should not normally see language selection screens.

19. All programs that can save to a floppy must be able to format a disk.

20. All programs should test for joystick/mouse mode. If the controller is not in the proper mode,
it should ask the user to change modes.

21. Programs should disable keys that are not functional in the product Typically this means
disabling the audio keys for CD control.

22. Controller responsiveness. The product should not queue up button presses, it should react and
give feedback immediately, and any cursor or highlight should move quickly enough for that
specific title. In many cases, if a pointer is used it should include an accelerator feature. If a
user feels compelled to repeat an operation because there is no response, the title is at fault.

23. The products should not have any dead time, i.e., time when nothing is occurring. Accesses
should first give audio and visual feedback that a selection has been made, then have a transition
of some sort, then begin the load during the transition. The transition interlude can consist of
music, color cycling, a voice over, a fade to a colored screen, or in some way distract the user.
A sleep or load symbol is generally insufficient to improve the perception.

24. Test that your product works properly with a trackball and a mouse.

25. They should also not be adversely affected by the presence of video peripherals such as
genlocks.

The User Interface 57

22.1 CDTV Title Issues :CDTV Title Guidelines

Reference Titles

The reason someone purchases or uses a reference title is for the information contained within. A
reference title should not have any of the following:

26. Inaccurate reference data. Imagine you’re a student doing a homework assignment, using the
CDTV title as a reference work. Your teacher gives you an “F* because your facts are wrong.

27. Missing information. If a menu, icon or other reference indicates that information relating to
the subject matter is available, the information should be accessible from that point. In other
words, if something is selectable, it must present the data associated with it

28. An inanity to accept keyboard input, print, or save to disk even though most people will not
be able to take advantage of these features at the moment.

Recreation Titles

29. A title must be playable to completion. No user or program error should prohibit the game
from continuing. If you make a stupid move and get eaten by a dragon and the game aids,
you have played to completion. If you make an incorrect move and the game freezes up or
prohibits the continuation of play, it is a not move that shouldn’t have been made, it is a bug.

30. A multiple player option should be in every recreational product Where it makes sense
(certain sports and arcade games), two-player simultaneous play is a requirement (e.g., hockey
and football).

31. Simulations must attempt to match the real world in as much detail as possible, including the
standard rules of play in sports games.

LEVEL 2 QUALITY: THE NEXT STANDARD

In addition to the requirements of the Level One, products need to be compelling enough to compete
successfully in the marketplace.

32. All titles must have an important and distinguishing value over doing the product on magnetic
media, or by book, or by cassette. Products should have greater detail, more choices, more
“sizzle”, be easier to use, or be faster to perform a function. Ports from another platform—
jpfiiiHing the Amiga—must be enhanced (music, speech, additional video, more choices, etc.).
An example of an excellent port is SimCity which added digital audio and rewrote the user
interface to take advantage of the numeric keypad on the IR controller.

33. Timely response is important
a) On a multitasking operating system, the time that elapses from when a selection is made till

the activity begins should be no more than three seconds. This is part perception (i.e., start
showing a graphic change while still loading), part disk organization (to speed access times),
and part programming (sometimes things can be cached or optimized). (Asterix appears to
have achieved this goal, so it is therefore possible.) To reiterate, first audio/visual feedback,
then some type of transition interlude which lasts no longer than three seconds, then the desired
result

58 CDTV Developers Reference Manual

22.1 CDTV Title Issues :CDTV Title Guidelines

b) For very long searches that cannot be done in a short period of time, inform the user of the
progress of the search. Options include putting up a screen and start listing “hits” or showing
a gas gatige depictL tg the progress of a search. The user should be able to halt a long search
in progress, retaining the results found to that point

34. Multimedia elements should be comparable to video or cartoons viewed on TV. These dements
(animations, speech, music, sounds, video) should be streamed from disk so that they can be
more in-depth and longer in duration. The animations should normally be 3 dimensional and
change focus (i.e., background, perspective), not limited to a static background screen.

35. Educational titles and adventure type recreational products need to have a depth of interactivity
options. For instance, if a character is walking down a street, the user should be able to go
down alleyways, into buildings, etc. Each screen or in each section should have more than one
(and more than two!) things that can be done. These options should include non-linear choices,
i.e., being able to jump around. Linear choices are really no choices at all because you must
follow a prescribed path.

36. Educational titles should have some type of testing function to allow you to examine your
progress in a section. The Bookmark feature should be used if appropriate (e.g., game scores,
place in a book, tests, etc.).

37. Reference titles should allow numbers and spaces to be input for searches. All reference titles
should support searches on keywords in body or title, and not be just an alphabetized in/W Df
options (similar to the index of a book). They should also have the Bookmark feature using
Non-Volatile RAM (NVR) to save search criteria and possibly the resultant plMnpnts

38. Recreational titles should use continuous streamed animations and CD audio for background.
They should be able to save game states and high scores using NVR.

39. Possible suggestions:
a) Online help

b) Templates to fit on top of the IR controller to simplify the buttons for complex products
(e.g., flight simulator).

c) Optionally viewable demo commercials of other products.
d) Hardware add-ons (a la Nintendo).
e) Supply a formatted disk (or at least a disk label) if the product can use a floppy.

The User Interface 59

3.1.1 Getting Started.Programming CDTV

Programming CDTV

CDTV is not just another Amiga. While you’ve heard this before, it must be the starting point in
programming a CDTV application (as differentiated from a port of an Amiga application to CDTV).

CDTV is certainly based on an Amiga—the A500, but CDTV has certain additional hardware which
you must account for; it has certain user interface standards differences, which you should adhere
to, and the typical CDTV user will probably be different than the typical A500 user.

Major Hardware Differences Between CDTV and A500

1. CD-ROM Drive

2. 1 Mbyte of Chip RAM

3. No Internal Floppy Drive

4. Non-volatile RAM

5. ’Credit card’ RAM and/or ROM expansion capability

6. Infrared controller instead of a keyboard and mouse

These hardware differences shape what CDTV can do than a standard A500 cannot...and what an
A500 can do that the standard CDTV cannot It is important to note the characteristics of each
of these hardware differences, so the application is well adapted to the CDTV environment. The
hardware differences have major implications for the design of CDTV application software.

The CD-ROM drive can be considered as a large capacity storage device with slow seek times
and a relatively slow data transfer rate. The large capacity makes CDTV a good vehicle for data
intensive application software packages. However, the speed issues must be addressed, and of the
two problems, the slow seek times will affect the normal application much more than the transfer
rates.

While the transfer rate is relatively slow compared to that of a modem hard disk and controller, its
speed (150K/sec) is adequate for most tasks. The time it takes your application to locate the data on
the disk will be much more significant, as it is possible for the time it takes for the CD-ROM drive
to seek from one place on the disk to another to be measured in seconds. This kind of delay can
seriously affect your application’s performance in the eyes of the user. Every effort must be made
to minimize the distance that your application needs to seek as well as to hide the seek time from
the user.

The first line of defense from slow seek times is to arrange the data properly on the CD disc. If
the data can be arranged so that the head does not have to seek much as the user proceeds through
the application, it may be possible to entirely hide the slow seeks. In some cases it may make
sense to duplicate the data in several places on the disc, and use a head position sensitive method to
determine which set of data should be accessed next.

Programming and CDTV Multimedia 1

3.1.1 Getting Started.Programming CDTV

The second line of defense is to distract the user from the slow seek times. Seek while the user
is preocuppied with reading on-screen instructions or listening to Amiga music or sounds. Take
advantage of the 96K of filesystem preloaded data. Have something happening on the screen to
take the user’s mind off the wait while the application waits for the new data to be read in from the

CD disc.

The memory configuration of the standard CDTV is 1 Mbyte of Chip RAM. There is no Fast RAM
on CDTV. This implies three things:

1. All accesses to RAM will face bus contention from the display. If you have a 640x200,4
bitplane Hires screen, performance will decrease since your program is operating from Chip
RAM where the contention is taking place.

2. Any requests by your application for Fast RAM willin'/. There is almost never any need to
specifically request Fast RAM on the standard Amiga, as the Exec memory allocation method
will supply Fast RAM before Chip RAM if no memory type is otherwise specified. There is
good reason never to request Fast RAM specifically, as this can cause an otherwise perfectly
reasonable request to fail, as it does on the CDTV.

3. On a CDTV system, you have one large pool of memory. While this does give you a larger
contiguous space (800K-900K), it also means that there is only one memory space to fragment
If you break it up into little pieces, it will be difficult to put back together until the next reboot
One of the goals of your application should be to keep the memory as unfragmented as possible.
Fragmented memory can also hurt overall system performance because memory allocations

can take longer.

The standard CDTV unit does not have an internal floppy drive, and while an external floppy drive
can be connected to CDTV, you cannot count on one being there. This eliminates the usual Amiga
method of storing data on a floppy. Instead, you will use the bookmark.device, which can save
small amounts of application specific data in non-volatile RAM (NVRJ.

The CDTV NVR survives reboots, survives if the unit is turned off, but is erased if the unit is
unplugged. It is important to remember that the amount of storage in a bookmark entry is very small
compared to the storage space available on a floppy. Generally, you will need to adopt different
storage techniques to fit your data into this space which will never be more than 1/16 the size of the
total bookmark data area. For example, if the total size of the bookmark memory is IK, then the
largest entry allowed is 64 bytes. While your application could use multiple entries to get around
this limitation, it is not generally recommended.

CDTV also has the capability for external “credit card” size RAM or ROM cards to be plugged
into the front of the CDTV. These cards can be treated as additional storage for bookmarks, as
RAM disks (or ROM disks) or even as additional system RAM. This is determined when the card is
initialized. Most CDTV software will be distributed on CD discs, though it is possible to distribute
special purpose software (like an extended audio panel) on one of these credit cards.

The infrared (IR) controller, which replaces the keyboard and mouse of the standard A500, must
radically reshape the design of your software. The user can no longer enter a text string easily

the keypad on the standard controller has a limited number of keys. For movement, the
controller has four cursor keys which can be used to emulate mouse movements or tire action of a
joystick. (There is a button on the controller to select joystick or mouse mode.) Hus means the
normal Amiga method of selection by moving a pointer and selecting an object by clicking on the
left mouse button is impractical because a pointer on a bitmap screen is very hard to control via

2 CDTV Developers Reference Manual

3.1.1 Getting Started:Programming CDTV

cursor keys to any degree of accuracy (or to any degree of speed). A few minutes playing with
Woikbench using the CDTV controller is generally enough to convince anyone of this. Instead,
alternate selection methods must be used.

In the CDTV Preferences, for instance, there are a limited number of icons to select, and an equally
limited number of screen positions for the pointer to be (in this case, the “pointer” is by
the flashing box surrounding the currently selected icon). To enter a text string, a videogame-like
high score name entry method must be used. The base design of many Amiga programs depends on
direct control of the cursor via the mouse and easy entry of text On CDTV these basic assumptions
must be reworked.

An important note on the use of the standard IR controller is that it has two modes—mouse
emulation and joystick emulation. Currently, the keypad is only active in mouse mode. For best
results, your application should work with the controller in both mouse and joystick modes. (In the
playerprefs.library, there is an input handler to make this simple). Working with both modes avoids
user frustration at pressing keys on an apparently dead controller and seemingly being ignored bv
the application.

Normally, when you eject a CD disc from CDTV, the system will reset. This is desirable in most
cases; when the user ejects the CD, she is finished with that application and wishes to do gnmi»thing
else. Resetting the system is the cleanest method of providing a clean slate for the next application
because CDTV applications are self-booting and set up their own execution environment

In certain special cases, however, this behavior is undesirable. An example is a program that allows
the user to examine the Table of Contents of a disc. It would be impractical to make Him reboot
the program to look at another disc. To avoid the automatic reboot, your application will have to
install a Changeint handler in the cdtv.device driver. Most applications, however, should allow the
automatic reboot to occur.

This should probably go without saying, but on CDTV, avoid going directly to the hardware. Even
though the characteristics of the current base machine are known, make sure your program is
adaptable. Avoid software timing loops; if the processor speed is increased in future models, your
application will break. Avoid hitting the CD disc controller directly; if the hardware were to change
your application would stop working. Do not count on the current memory map; take advantage
of additional RAM if it is available, and work with less RAM if some is unavailable. If the user
has a SCSI drive hooked up, and is using 100K for buffers, please, try to continue to work. If the
user has two floppies hooked up to an A690, there will be somewhat less RAM available for your
application.

The standard CDTV unit is intended to be the beginning of a family. Each member of the family
will have somewhat different characteristics. It is to your advantage and to our advantage if your
application works on the entire family of products.

Software Differences Between CDTV and the A500

For the most part, CDTV has the same software as the A500 plus some extras. CDTV also has an
additional 256K of CDTV system software, which contains the modules necessary to support the
CDTV hardware. The current CDTV unit is equipped with Version 1.3 of the Amiga Operating
System.

Programming and CDTV Multimedia 3

Getting Started.Programmng CDTV

Prepare For The Future. With a probable operating system upgrade in CDTV’s future,
and die existence of the A690 CDTV add-on for the A500, CDTV software will need to
operate under both 1.3 and 2.04. to operate under both 1.3 and 2.04.

The main differences between the CDTV software and the A500 software are as follows:

Possibly this, more than anything illustrates the difference between the expected audience for
CDTV systems and for the A500. CDTV systems never GURU. A CDTV owner shouldnever
see the flashing red box after the failure of an application program or piece of system software.
Instead, the CDTV will reset The additional information that the alert message brings the
A500 user was determined to be inappropriate and unnecessary to the CDTV user.

Watch For Multiple Resets. If you hear reports of your application resetting a
CDTV many times, the application is involved in a GURU situation. Only the GURU
has been removed. The Software Error Task Held requester is still present Your
application should turn off error requesters by setting the process pr_WindowPtr to
-1 and handle them internally, instead.

The normal A500 is connected to an RGB monitor, and is set to a resolution of 640x200, and
text is output in 80 columns. The normal CDTV is connected to the family television. 640x200
may not be appropriate, and 80 column text is never appropriate. Unlike an A500 where the
user is right next to the monitor, CDTV will be used by a person sitting several feet or yards
away from the screen. Your selection of resolutions must be appropriate to this situation.
Rediscover the joys of Lores 320x200 screens, like the additional color and bandwidth. Make
sure your text is readable on a television from several feet away.

CD discs for CDTV are not in the standard AmigaDOS file format. CDTV supports an extended
version of the ISO-9660 file format as its preferred format for CD discs. The characteristics
of the ISO-9660 file format are somewhat different that that of the AmigaDOS file format In
fact it is much like an extended MS-DOS format: It is very quick to get a directory; the time
to find a particular file will vary depending on where a file is in the directory or on the disk so
the access times between files in different directories can vary greatly; and the block allocation
method used is well suited to loading large files quickly.

This is in direct contrast to the characteristics of the AmigaDOS filesystem. Many of the
tricks used in Amiga applications to speed up access of files will actually slow down a CDTV
application when accessing a CD disc. An application will probably have to be tuned for the
best performance from a CD disc. The ICOM CDTV emulator card can be of great assistance
when tuning, as it exactly emulates the characteristics of the CD drive, and is much quicker to
use than burning gold test discs.

User Interface—Single Tasking, No Windows, One Screen
The user interface of a CDTV application should be different than that of an Amiga application.
To the user, a CDTV system, unlike an A500 system, will typically seem to be doing only
one thing at a time—running your application. Multitasking is still around, but it is in the
background. The CDTV user will generally not be opening up multiple Shells, or running a

4 CDTV Developers Reference Manual

3.1.1 Getting Started.Programming CDTV

raytrace program in the background. There will usually be only one window present on the
screen.

User controlled sliding screens will probably not be used for a while, if at all. This means that
the standard Amiga intuition gadgets found in window and screen borders are not necessary
nor desirable for use in a CDTV User Interface (UI). The JR controller does not lend itself
to easy manipulation of those gadgets, so a different UI model is mandated. Even pulldown
menus are affected by the CDTV UI choices, i.e., they are not to be used at all. To tire user, a
typical CDTV screen will be much less busy than a typical Amiga screen—lower resolution,
fewer icons, less text, and fewer gadgets will give the impression of a simpler to use marhinp

No Workbench

On a CDTV system, the average user will not encounter Workbench. Workbench is generally
used to maintain files and launch applications. In general, there is little little file muntenancc
involved on CD discs. Starting a CDTV application will normally occur from the Startup-
Sequence on the application disc itself. In other words, CDTV applications should be designed
as self-booting discs. The user will expect to insert the disc and have the application on that disc
automatically start. In cases of discs containing multiple applications, you will need to provide
a means of selecting the proper application to run, and the means to launch the application.
Workbench should not be used for this purpose.

The startup-sequence of a CDTV application should be as short as possible. The user should
not be left staring at a blank screen while a large application loads its data files; something must
appear on the screen as quickly as possible,

CDTV Preferences
Unlike the A500, CDTV keeps some of its preferences settings, such as language and screen
centering in the NVR. These settings are read by the play erprefs .library, and used automatically
in the CDTV title screen and the screen saver. If your application wishes to take advantage of the
same settings, it must access those settings itself, either directly through the play erprefs.library,
or indirectly by placing the Booklt utility in the Startup-Sequence file for the application disk.
The settings in devs:System-Configuration are used as initial settings, which are then modified
by the CDTV Preferences stored in the NVR.

PIayerprefs.library

The play erprefs .library provides some routines which can be useful in developing an application
for CDTV. Some of the more important routines can also be accessed via external programs
executed in the application disc Startup-Sequence. The play erprefs.library has routines for
reading CDTV preferences, centering the screen, a screen saver, a joy/mouse controller handler,
a keyclick handler, routines for color map manipulation, and for simple bitmap manipulation.
In short, it contains the routines needed to operate the CDTV Preferences and Audio Panel
programs. Several of the routines will be very useful to your application. The most useful can
be invoked from the Startup-Sequence via the Booklt command. However, if your application
calls the play erprefs.library direoly, you can eliminate the need for the additional rammamt in
the startup-sequence.

CDTV Printer Preferences
The prtprefs.library provides the means for the user to make printer preferences settings such
as the model of printer, paper size, and lines per page. The prtprefs.library includes a CDTV
Printer Preferences editor with a similar look and feel to the CDTV Player Preferences program.

Programming and CDTV Multimedia 5

3.1.1 Getting Started.Programming CDTV

This library is not included in the CDTV system ROM, but is included on the CD disc of a
CDTV application that wishes to provide printing capabilities to its users.

The CDTV IR Controller is much simpler than a standard Amiga keyboard, in that is has
fewer keys. This requires restructuring applications so that the standard IR controller can be
used easily to operate the application. Never count on the presence of an optional trackball,
keyboard, or mouse. Most CDTV owners will have the base configuration. If the application
is difficult to use without optional equipment, it may find its market limited.

6 CDTV Developers Reference Manual

3.1.2 Getting Started.Recommended CDTV Development Environments

Recommended CDTV Development
Environments

One of the major advantages of CDTV development versus development for other multimedia
platforms is the cost of the basic development platform. The Amiga offers all the tools and
peripherals necessary for the majority of applications. This article describes the equipment necessary
for CDTV developers, in function of their budget and specific requirements.

Minimum Configuration

For the developer with limited capital, here is the suggested minimum development configuration:

Amiga 2000 (1 Mbyte chip RAM)
A2058-2 memory expansion board
A2091 SCSI disk controller
50 Mbyte SCSI disk
A1084 monitor
A520 (NTSC) or A521 (PAL) video adapter
Inexpensive TV set
CDTV player
A1011 floppy disk drive

THE CPU

The Amiga 2000 has the same CPU (Motorola 68000) at the same clock speed as the CDTV.
This assures equal performance between your development system and the target system, avoiding
potential surprises when animations run slower on a 68000 than on the 68040 at 25Mhz that had
been used for development and testing. It also has the same limited amount of RAM (1 Mbyte Chin
RAM standard).

Two additional Mbytes of RAM will probably be necessary, as many of the development tools work
much better with 3 Mbytes of RAM rather than just 1 Mbyte. A RAM disk is often useful to speed
up compilations, for temporary storage, etc.

Memory expansion is available from numerous vendors. Commodore’s A2058 memory board
comes standard with 2 Mbytes, but can be expanded up to 8 Mbytes if necessary.

Programming and CDTV Multimedia 7

3.12
Getting Started'.Recommended CDTV Development Environments I

Kickstart 13. The first CDTV player was shipped with Kickstart 1.3 in ROM. Sub-
JSSmoMi of*e CDTV ftmily will ship with Kicksum i04 in ROM. The *w
version of the Kickstart provides numerous advantages to the CDTV developer. How«vf£
it also provides a disadvantage: applications must be able to support both versions of the

operating system.

or 2.04? The Amiga 3000 and the A500 Plus have been shipped with KS 2.04. Systems
like the A2500 and A3000 allow the developer to boot either under KS 1.3 or i.w.
Finally, KS 2.04 upgrade kits for CDTV players are available to CDTV developers for
testing their applications. It is vital to select one of these options and to test your application
under both versions of the operating system prior to mastering CDs.

SCSI CONTROLLERS AND DISK DRIVES

A SCSI disk controller is obligatory. Commodore’s A2091 board can be used as a 1^ carf-a
35" SCSI disk can be mounted directly on the board. It also has an external 25-pm SCSI connector
for connecting external drives. This feature often comes in handy as you expand your development
environment, adding new SCSI disk drives, tape backup units, etc.

If you use the A2091, make sure you have the latest revision of the ROMs on the controller. As of

this writing, the most recent revision is 6.6.

The size of the SCSI disk attached to the controller should correspond to the application at hand. A
game may only require 2 Mbytes of data, while an atlas may need 450 Mbytes.

The following drives have been tested and approved:

Quantum 50,105,200 Mbyte
Seagate 410 Mbyte (ref. ST2502N)
Seagate 600 Mbyte (ref. ST4766N)

MONITORS AND TV SETS

Commodore’s A1084 monitor is recommended as an inexpensive solution for development work.
It can accept both RGB and composite video signals, and it includes stereo speakers. The 1084
exists in both NTSC and PAL versions.

A standard TV set is strongly recommended, the cheaper the better. The target CDTV Playfr ^
nearly always be connected to a TV set, not to an RGB monitor. When an RGB signal is encoded for
RF or composite output, colors are saturated, shadows appear and text becomes much more difficult
to read. Testing on a TV set during product storyboarding and prototyping can save enormous

amounts of time later.
Why a cheap TV? If your product looks good on an inexpensive TV set, it will look wonderful
your big-screen, surround sound set. Many of the TV sets in use are 5 to 10 years of age. Many
of them are poorly adjusted for colors, image centering, contrast, etc. Using an inexpensive set for
development is a constant reminder of the reality of many consumer entertainment centers.

8 CDTV Developers Reference Manual

3.12 Getting Started.Recommended CDTV Development Environments I

The least expensive way to connect a TV set to your Amiga is via the A520 (NTSC) or A521 (PAL)
encoder. This small module plugs into the RGB port of your Amiga, and generates both RF and
composite video signals. You can connect the RF signal to your TV set, or the composite signal
may be connected to the A1084 monitor.

CDTV PLAYER AND EXTERNAL FLOPPY

A CDTV player is required for testing your product The standard player is sufficient for a minimum
or' i guration. However, it is recommended to include extra accessories when possible. Your code

should accept input smoothly from a trackball as well as from the remote control. Video applications
should be tested using a CDTV genlock.

Test On The Tube. Make sure to connect your player to your TV set for testing, not to
your RGB monitor.

The external A1011 floppy disk drive is vital for product testing. With this drive attached to your
CDTV player, you can boot your application from a floppy disk and test various parts of your code,
such as the routines to handle input from the remote, or to synchronize CD audio tracks. When you
have produced a test disc, you can use the data on the test disc (which usually does not change) and
uncover the bugs lurking in your code (which usually does).

Mid-sized Configuration

The following configuration is recommended for the developer with an average budget:

Amiga 2500 (5 Mbytes RAM total)
A2091 SCSI disk controller
50 Mbyte SCSI disk
450 Mbyte 2nd SCSI disk
A2320 Video Display Enhancer
A1950 Multiscan monitor
A3070 streamer tape drive
A520 (NTSC) or A521 (PAL) video adapter
Inexpensive TV set
CDTV player
A1011 floppy disk drive

THE CPU

The Amiga 2500 contains two CPUs: the Motorola 68000 at 7 Mhz, and a 68030 at 25 Mhz.
Developing in 68030 mode is much more comfortable than on a 68000, yet it is possible to revert to
the 68000 for testing your application. Simply press both mouse buttons while booting, then select
68000 mode from the menu. Furthermore, in 68000 mode only 1 Mbyte of RAM is available to the
system Oust like on the CDTV player).

Programming and CDTV Multimedia 9

3.12 Getting Started.Recommended CDTV Development Environments

SCSI CONTROLLERS AND DISK DRIVES

When more disk capacity is required, at least two SCSI disk drives are recommended. One disk

can be used for the operating system, tools, compilers, etc. The other disk may contain data, source

code etc. If you use a laige haid disk, consider creating two or more partitions on the dnve. This

provides added security in case of a read/write error (only one partition needs to be re-formatted).

Certain development tools (the CD-XL toolkit, audio capture boards, etc.) do intensive reads and

writes to the disk, increasing the likelihood of disk errors.

Make sure to verify the SCSI device number on each drive you connect to the system. If two

devices have the same number, the system will not boot Device numbers are usually determined

by jumpers or DIP switches on the SCSI drives.

If you purchase an external SCSI disk drive, consider purchasing an external housing as well. The

housing (delivered standard with some drives) contains the power supply and external connectors

to facilitate daisy-chaining the drives.

BACKUP SYSTEMS

If you opt for a laige disk, you should seriously consider purchasing some sort of backup system-

Floppy disks may suffice for a 20 Mbyte hard drive; a 50 Mbyte drive requires 57 floppies; a 450

Mbyte drive requires a tape backup.

Another advantage of tape backup systems appears late in the development cycle, during pre¬

mastering. When you are ready to cut a test CD-ROM, you must send your data to a pre-mastenng

center with write-once equipment. Many developers have sent their SCSI hard disk dnves to

the pre-mastering facility. If you have a tape system, you may send along a tape, and continue

developing while your product is pre-mastered.

The A3070 tape drive from Commodore provides data protection at a reasonable cost Backup is

reasonably fast (7 Mbytes/minute). Third parties have developed utility software to back-up and

restore to this (and other) SCSI tape units. AmiBack, from Moonlighter Software, has been tested

successfully.

Some developers have used removable SCSI drives successfully. Syquest drives are an inexpensive

way to back up a hard disk drive. However, caution is advised, as problems have been reported

from some developers using Syquest drives.

MONITORS AND TV SETS

The A1950 multiscan monitor, combined with the A2320 display enhancer, provide a stable, non¬

flicker image in interlaced mode. However, as discussed previously, prototyping, screen design and

product testing should be performed on a TV set not on an A1950.

10 CDTV Developers Reference Manual

3.12 Getting Started.Recommended CDTV Development Environments I

High-end configuration

If sufficient funding is available, the following configuration will provide maximum comfort and
productivity for the developer

Amiga 2500 or Amiga 3000 with 9 Mbytes RAM
A2091 SCSI disk controller (A2500 only)
50 Mbyte SCSI disk
650 Mbyte SCSI disk drive
A3070 or DAT tape drive
A1950 monitor
A520 (NTSC) or A521 (PAL) video adapter
Inexpensive TV set
CDTV player
A1011 floppy disk drive
CTrac emulator

THE CPU

The Amiga 2500 remains the development system of choice, since its two processors provide both
a fast development processor and a slow target emulation system. However, the A3000 may also
be used for development The A3000 includes many of the optional features of the A2500 (SCSI
controller, A2630 Video Display Adapter, memory expansion capability) as standard items on the
mother board. Thus a fully-configured A3000 is usually less expensive than an equivalent A2500.

If you choose to develop on an A3000, you should take special precautions to avoid 68030-specific
code, and to test your application on a system at 7 Mhz.

9 Mbytes of RAM are useful for grabbing large images, and for processing 24-bit graphics.

SCSI CONTROLLERS AND DISK DRIVES

Th® A3000 includes a SCSI controller directly on the motherboard, as well as an external 25-pin
SCSI connector. However, it has no room for an internal 5.25" device.

DAT DRIVES

DAT drives provide numerous advantages over other tape backup systems:

• They can be used to record and play back CD-quality audio, at 44.1 Khz

• TTieir capacity (1.2 Gbytes) is appreciable

• They are commonly used by mastering facilities

Programming and CDTV Multimedia 11

3.12 Getting Started.Recommended CDTV Development Environments l

CTRAC EMULATOR

The CTrac emulator, from ICOM Simulations, is an extremely useful tool for CDTV development
This system lets you create an ISO 9660 CD-ROM image on a SCSI hard disk, including error
correction, sub-code information, CD-DA and CD+G tracks. You then connect your CDTV player to
the emulation board—instead of to the CD-ROM mechanism in the player—and run your application

directly off the SCSI disk image.

This is a full emulation—the application actually runs in the memory of the CDTV player, not the
Amiga host It fully emulates CD-ROM seek times and data transfer rates.

This board saves time (and money) for developers by reducing the number of test discs which must
be produced. You can immediately test response times, seek times, and system throughput The
ability to play back CD audio tracks lets you precisely emulate mixed-mode discs.

12 CDTV Developers Reference Manual

3.13 Getting Started.Developer’s Introduction

Developer’s Introduction

This is the general introduction to the Amiga family of computers. It is included here for
developers new to the Amiga platform. For the current version ofCDTV, only the portions
of this introduction dealing with the 68000 are relevant.

The Amiga family of computers consists of several models, each of which has been designed 0n the
same premise—to provide the user with a low-cost computer that features high-cost performance.
The Amiga does this through the use of custom silicon hardware that yields advanced graphics and
sound features.

There are four basic models that make up the Amiga computer family: the A500, A1000, A2000, and
A3000. Though the models differ in price and features, they have a common hardware nucleus that
makes them software compatible with one another. This chapter describes the Amiga’s hardware
components and gives a brief overview of its graphics and sound features.

Components of the Amiga

These are the hardware components of the Amiga:

• Motorola MC68000 16/32-bit main processor. The Amiga also supports the 68010, 68020,
and 68030 processors as an option. The A1000, A500 and A2000 contain the 68000, while the
A3000 utilizes the 68030 processor.

• Custom graphics and audio chips with DMA capability. All Amiga models are equipped with
three custom chips named Paula, Agnus, and Denise which provide for superior color graphics,
digital audio, and high-performance interrupt and I/O handling. The custom chips can access
up to 2MB of memory directly without using the 68000 CPU.

• From 256K to 2 MB of RAM expandable to a total of 8 MB (over a gigabyte on the Amiga
3000).

• 312K of system ROM containing a real time, multitasking operating system with sound,
graphics, and animation support routines. (V1.3 and earlier versions of the OS used 256K of
system ROM.)

• Built-in 3.5 inch double sided disk drive with expansion floppy disk ports for connecting up to
three additional disk drives (either 3.5 inch or 5.25 inch, double sided).

• SCSI disk port for connecting additional SCSI disk drives (A3000 Only).

• Fully programmable parallel and RS-232-C serial ports.

• Two button opto-mechanical mouse and two reconfigurable controller ports (for mice, joysticks,
light pens, paddles, or custom controllers).

Programming and CDTV Multimedia 13

3.13
Getting Started:Developer's Introduction

. A professional keyboard with numeric keypad, 10 function keys, and cursor keys. Avarietyof
international keyboards are also supported.

. Ports for analog or digital RGB output (all models), monochrome video (A500 and A2000),
composite video (A1000), and VGA-style multiscan video (A3000).

• Ports for left and right stereo audio from four special purpose audio channels.

. Expansion options that allow you to add RAM, additional disk drives (floppy or hard), periph¬

erals, or coprocessors.

THE MC68000 AND THE AMIGA CUSTOM CHIPS

The Motorola MC68000 microprocessor is the CPU used in the A1000, the A500. and the A2000.
The 68000 is a 16/32-bit microprocessor, internal registers are 32 bits wide, while the databus and

arel6£ Tte 68000’s system clock speed is 7.15909 MHz on NTSC systems (USA) or
7.09379 MHz on PAL systems (Europe). These speeds can vary when using an external system

clock, such as from a genlock board.

The 68000 has an address space of 16 megabytes. In the Amiga, the 68000 can address up to 9

megabytes of random access memory (RAM).

In the A3000, the Motorola MC68030microprocessor is the CPU. This is a full 32-bitmicroprocessor
with a system clock speed of 16 or 25 megahertz. The 68030 has an address space of 4 gigabytes.
In the A3000, over a gigabyte of RAM can be addressed.

In addition to the 680x0, all Amiga models contain special purpose hardware known as the custom
chips that greatly enhance system performance. The term custom chips refers to the three integrated
circuits which were designed specifically for the Amiga computer. These three custom chips, named
Paula, Agnus, and Denise, each contain the logic to handle a specific set of tasks such as video,

audio, or I/O.

Because the custom chips have DMA capability, they can access memory without using the 680x0
CPU—this frees the CPU for other types of operations. The division of labor between the custom
chips and the 680x0 gives the Amiga its power, on most other systems the CPU has to do everything.

The memory shared between the Amiga’s CPU and the custom chips is called Chip memory. The
more Chip memory the Amiga has, the more graphics, audio, and I/O data it can operate on without
the CPU b*ing involved. All Amigas can access at least 512K of Chip memory.

The version of the custom chips, known as the Enhanced Chip Set or ECS, can handle up to
2 MB of memory and has other advanced features.

Although there are different versions of the Amiga’s custom chips, all versions have some common

features. Among other functions, the custom chips provide the following:

• Bitplane generated, high resolution graphics capable of supporting both PAL and NTSC video

standards.

NTSC systems. On NTSC systems, the Amiga typically produces a 320 by 200
non-interlaced or 320 by 400 interfaced display in 32 colors. A high resolution mode
provides a 640 by 200 non-interlaced or 640 by 400 interlaced display in 16 colors.

14 CDTV Developers Reference Manual

3.13 Getting Started:Developer’s Introduction

PAL systems. On PAL systems, the Amiga typically produces a 320 by 256 non¬
interlaced or 320 by 512 interlaced display in 32 colors. High resolution mode
provides a 640 by 256 non-interlaced or 640 by 512 interlaced display in 16 colors.

The design of the Amiga’s display system is very flexible and there are many other modes
available. Hold-and-modify (HAM) mode allows for the display of up to 4,096 colors on screen
simultaneously. Overscan mode allows the creation of higher resolution displays specially
suited for video and film applications. Displays of arbitrary size, larger than the visible viewing
area can be created. Amigas which contain the Enhanced Chip Set (ECS) support Productivity
mode giving displays of 640 by 480, non-interlaced with 4 colors from a pallette of 64.

• A custom graphics coprocessor, called the Copper, that allows changes to most of the
purpose registers in synchronization with the position of the video beam. This allows such
special effects as mid-screen changes to the color palette, splitting the screen into multiple
horizontal slices each having different video resolutions and color depths, beam-synchronized
interrupt generation for the 680x0, and more. The coprocessor can trigger many times per
screen, in the middle of lines, and at the beginning or during the blanking interval. The
coprocessor itself can directly affect most of the registers in the other custom chips, freeing the
680x0 for general computing tasks.

• 32 system color registers, each of which contains a 12-bit number as four bits of red, four bits
of green, and four bits of blue intensity information. This allows a system color palette of 4,096
different choices of color for each register.

• Eight reusable 16-bit wide sprites with up to 15 color choices per sprite pixel (when sprites are
paired). A sprite is an easily movable graphics object whose display is entirely independent of
the background (called a playfield); sprites can be displayed over or under this background. A
sprite is 16 low resolution pixels wide and an arbitrary number of lines tall. After producing
the last line of a sprite on the screen, a sprite DMA channel may be used to produce yet another
sprite image elsewhere on screen (with at least one horizontal line between each reuse of a sprite
processor). Thus, many small sprites can be produced by simply reusing the sprite processors
appropriately.

• Dynamically controllable inter-object priority, with collision detection. This means that the
system can dynamically control the video priority between the sprite objects and the bitplane
backgrounds (playfields). You can control which object or objects appear over or under the
background at any time. Additionally, you can use system hardware to detect collisions between
objects and have your program react to such collisions.

• Custom bit blitter used for high speed data movement, adaptable to bitplane animation, The
blitter has been designed to efficiently retrieve data from up to three sources, combine the data
in one of 256 different possible ways, and optionally store the combined data in a destination
area. The bit blitter, in a special mode, draws patterned lines into rectangularly organized
memory regions at a speed of about 1 million dots per second; and it can efficiendy handle area

• Audio consisting of four digital channels with independendy programmable volume and sam¬
pling rate. The audio channels retrieve their control and sample data via DMA. Once started,
each channel can automatically play a specified waveform without further processor interaction.
Two channels are directed into each of the two stereo audio outputs. The audio channels may

Programming and CDTV Multimedia 15

3.13 Getting Started:Developer’s Introduction

be linked together to provide amplitude or frequency modulation or both forms of modulation

simultaneously.

• DMA controlled floppy disk read and write on a full track basis. This means that the built-in
disk can read over 5600 bytes of data in a single disk revolution (11 sectors of 512 bytes each).

AMIGA MEMORY SYSTEM

As mentioned previously, the custom chips have DMA access to RAM which allows than to
perfonn graphics, audio, and I/O chores independently of the CPU. This shared memory that both
the custom chips and the CPU can access directly is called Chip memory.

The custom chips and the 680x0 CPU share Chip memory on a fully interleaved basis. Since the
680x0 only needs to access the Chip memory bus during each alternate clock cycle in order to run
full speed, the rest of the time the Chip memory bus is free for other activities. The custom chips
use the memory bus during these free cycles, effectively allowing the CPU to run at full speed most

of the time.

There are some occasions though when the custom chips steal memory cycles from the 680x0. In
the higher resolution video modes, some or all of the cycles normally used for processor access are
needed by the custom chips for video refresh. In that case, the Copper and the blitter in the custom
chips steal time from the 680x0 for jobs they can do better than the 680x0. Thus, the system DMA
rhannp.ig are designed with maximum performance in mind.

Even when such cycle stealing occurs, it only blocks the 680x0 s access to the internal, shared
memory. The custom chips cannot steal cycles when the 680x0 is using ROM or external memory,
also known as Fast memory.

The DMA capabilities of the custom chips vary depending on the version of the chips and the
Amiga model. The original custom chip set found in the A1000 could access the first 512K of
RAM. Most AlOOOs have only 512K of RAM so some of the Chip RAM is used up for operating

system overhead.

A later version of the custom chips found in early A500s and A2000s replaced the original Agnus
chip (8361) with a newer version called Fat Agnus (8370/8371). The Fat Agnus chip has DMA
access to 512K of Chip memory, just like the original Agnus, but also allows an additional 512K
of internal slow memory or pseudo-fast memory located at ($00C0 0000). Since the slow memory
can be used for operating system overhead, this allows all 512K of Chip memory to be used by the

custom chips.

The name slow memory comes from the fact that bus contention with the custom chips can still
occur even though only the CPU can access the memory. Since slow memory is arbitrated by the
gami». gate that controls Chip memory, the custom chips can block processor access to slow memory
in the higher resolution video modes.

The version of Agnus and the custom chips found in most A500s and A2000s is known as
the Enhanced Chip Set or ECS. ECS Fat Agnus (8372A) can access up to one megabyte of Chip
memory. It is pin compatible with the original Fat Agnus (8370/8371) found in earlier A500 and
A2000 models. In addition, ECS Fat Agnus supports both the NTSC and PAL video standards on
a single chip.

In the A3000, the Enhanced Chip Set can access up to two megabytes of Chip memory.

16 CDTV Developers Reference Manual

Getting Started:Developer’s Introduction

The amount of Chip memory is important since it determines how much graphics, audio, and disk
data the custom chips can operate on without the 680x0 CPU. The table below summarizes the basic
memory configurations of the Amiga.

Chip RAM Maximum Total RAM
(base model) Chip RAM (base model)

Maximum
Total RAM

Amiga 1000 256K 512K 256K
Amiga 500 512K 1MB 1MB
Amiga 2000 512K 1MB 1MB
Amiga 3000 1MB 2 MB 2 MB

9MB
9 MB
9MB

over 1GB

Another primary feature of the Amiga hardware is the ability to dynamically control which part of
the Chip memory is used for the background display, audio, and sprites. The Amiga is not limited to
a small, specific area of RAM for a frame buffer. Instead, the system allows display bitplanes, sprite
processor control lists, coprocessor instruction lists, or audio channel control lists to be located
anywhere within Chip memory.

This same region of memory can be accessed by the bit blitter. This means, for example, that the
user can store partial images at scattered areas of Chip memory and use these images for animation
effects by rapidly replacing on screen material while saving and restoring background images. In
fact, the Amiga includes firmware support for display definition and control as well as support for
animated objects embedded within playfields.

Hoppy disk storage is provided by a built-in, 3.5 inch floppy disk drive. Disks are 80 trade, double
sided, and formatted as 11 sectors per track, 512 bytes per sector (over 900,000 bytes per disk). The
disk controller can read and write 320/360K IBM PC™ (MS-DOS™) formatted 3.5 or 5.25 inch
disks, and 640/720K IBM PC (MS-DOS) formatted 3.5 inch disks.

Up to three extra 3.5 inch or 5.25 inch disk drives can be added to the Amiga. The A2000 and
A3000 also provide room to mount floppy or hard disks internally. The A3000 has a built-in hard
disk drive and an on-board SCSI controller which can handle two internal drives and up to seven
external SCSI devices.

The Amiga has a full complement of dedicated I/O connectors. The circuitry for some of these
peripherals resides on the Paula custom chip while the Amiga’s two 8520 CIA chips handle other
I/O chores not specifically assigned to any of the custom chips. These indude modem control, disk
status sensing, disk motor and stepping control, ROM arable, parallel input/output interface, and
keyboard interface.

The Amiga includes a standard RS-232-C serial port for external serial inpul/output devices such
as a modem, MIDI interface, or printer. A programmable, Centronics-compatible parallel port
supports parallel printers, audio digitizers, and other peripherals.

The Amiga also includes a two-button, opto-mechanical mouse plus a keyboard with numeric
keypad, cursor controls, and 10 function keys in the base system. A variety of international
keyboards are supported. Many other input options are available. Other types of controllers can be
attached through the two controller ports on the base unit including joysticks, keypads, trackballs,
light pens, and graphics tablets.

Programming and CDTV Multimedia 17

Getting Started.Developer’s Introduction 3.13

System Expandability And Adaptability

New peripheral devices may be easily added to all Amiga models. These devices arc automatically
recognized and used by system software through a weU defined, well documented linking procedure
called AUTOCONFIG™. AUTOCONFIG is short for automatic configuration and is the process
that allows memory or I/O space for an expansion board to be dynamically allocated by the system
at boot time. Unlike some other systems, there is no need to set DIP switches to select an address
space from a fixed range reserved for expansion devices.

On the A500 and A1000 models, peripheral devices can be added using the Amiga’s 86-pin
expansion connector. Peripherals include hard disk controllers and drives, and additional external
RAM. Extra floppy disk units may be added from a connector at the rear of the unit.

The A2000 and A3000 models provide the user with the same features as the A500 or A1000, but
with the added convenience of simple and extensive expandability through the Amiga’s 100-pin

Zorro expansion bus.

The A2000 contains 7 internal slots and the A3000 contains 4 internal slots plus a SCSI disk
controller that allow many types of expansion devices to be quickly and easily added inside die
machine. Available options include RAM boards, coprocessors, hard disk controllers, video cards,

and I/O ports.
The A2000 and A3000 also support the special Bridgeboard™ coprocessor card. This provides a
complex IBM PC™ on a card and allows the Amiga to run MS-DOS™ compatible software, while
simultaneously running native Amiga software. In addition, both machines have expansion slots
capable of supporting standard, IBM PC™ style boards.

VCR And Direct camera Interface

In addition to the connectors for monochrome composite, and analog or digital RGB monitors, the
Amiga can be expanded to include a VCR or camera interface. With a genlock board, the system is
capable of synchronizing with an external video source and replacing the system background color
with the external image. This allows development of fully integrated video images with computer
generated graphics. Laser disk input is accepted in the same manner.

The A2000 and A3000 models also provide a special internal slot designed for video applications.
This allows the Amiga to use low-cost video expansion boards such as genlocks and frame-grabbers.

18 CDTV Developers Reference Manual

3.13 Getting Started.Developer’s Introduction l

Amiga System Block Diagram

The diagram below highlights the major hardware components of the Amiga's architecture. Notice
that there are two separate buses, one that only the CPU can access (Fast memory) said annttior one
that can the custome chips share with the CPU (Chip memory).

CPU

r j SYSTEM EXPANSION L ^

i—r

CUSTOM CHIP SECTION

atuaimm

<»

J L

BXMNOCNOGNNSCTQiUS)

I 1

U 1 —► AGNUS

i

i

i

mcmr MAM wkkIMM A*m

Programming and CDTV Multimedia 19

3.1.4 Getting Started.General Amiga Development Guidelines

General Amiga Development
Guidelines

The environment of the Amiga computer is quite different than that of many other systems. The
Amiga is a multitasking platform, which means multiple programs can ninona single machine
simultaneously. However, for multitasking to work correctly, care must be taken to ensure that
programs do not interfere with one another. It also means that certain guidelines must be followed
during programming.

• Check for memory loss. Operate your program, then exit. Write down the amount of free
memory. Repeat the operation of your program and exit. The amount of free memory
remaining should be exactly the same. Any difference indicates a serious problem in your
cleanup. (Beware when checking the amount of free memory - some memory loss is normal
the first time you open a device or disk-based library because the system has to allocate memory
to accommodate them. That is why you should run the program once before checking free
memory.) The tool Drip is useful in tracking this; the programs Snoop and SnoopStrip can be
used to determine which alllocation is not getting freed.

• Use all of the program debugging and stress tools that are available when writing and testing your
code. New debugging tools such as Enforcer, MungWall and Scratch can help find uninitialized
pointers, attempted use of freed memory and misuse of scratch registers or condition codes
(even in programs that appear to work perfectly).

• Always make sure you actually get any system resource that you ask for. This applies to
memory, windows, screens, file handles, libraries, devices, ports, etc. Where an error value or
return is possible, ensure that there is a reasonable failure path. Many poorly written programs
will appear to be reliable, until some error condition (such as memory full or a disk problem)
causes the program to continue with an invalid or null pointer, or branch to untested error
handling code.

• Always clean up after yourself. This applies for both normal program exit and program
termination due to error conditions. Anything that was opened must be closed, anything
allocated must be deallocated. It is generally correct to do closes and deallocations in reverse
order of the opens and allocations. Be sure to check your development language manual and
startup code; some items may be closed or deallocated automatically for you, especially in
abort conditions. If you write in the C language, make sure your code handles Ctrl-C properly.

• Remember that memory, peripheral configurations, and ROMs differ between models and
between individual systems. Do not make assumptions about memory address ranges, stor¬
age device names, or the locations of system structures or code. Never call ROM rou¬
tines directly. Beware of any example code you find that calls routines at addresses in
the $F0 0000-$FF FFFF range. These are ROM routines and they will move with every

Programming and CDTV Multimedia 21

3.1.4 Getting Started:General Amiga Development Guidelines

OS release. The only supported interface to system ROM code is through the library, device,

and resource calls.

• Never assume library bases or structures will exist at any particular memory location. The only
absolute address in the system is $0000 0004, which contains a pointer to the exec.library base.
Do not modify or depend on the format of private system structures. This includes the poking
of copper lists, memory lists, and library bases.

• Never assume that programs can access hardware resources directly. Most hardware is con¬
trolled by system software that will not respond well to interference from other programs.
Shared hardware requires programs to use the proper sharing protocols. Use the defined inter¬
face; it is the best way to ensure that your software will continue to operate on future models

of the Amiga.

• Never access shared data structures directly without the proper mutual exclusion (locking).
Remember that other tasks may be accessing the same structures.

• The system does not monitor the size of a program’s stack. Take care that your program does
not cause stack overflow, and provide enough extra stack space for the possibility that future
revisions of system functions might require additional stack space.

• Never use a polling loop to test signal bits. If your program waits for external events like menu
selection or keystrokes, do not bog down the multitasking system by busy-waiting in a loop.
Instead, let your task go to sleep by WaitQing on its signal bits. For example;

signals = (ULONG) Wait ((l<<windowPtr->UserPort->mp_SigBit) I
(l<<consoleMsgPortPtr->mp_SigBit));

This turns the signal bit number for each port into a mask, then combines them as the argument
for the exec.library/WaitO function. When your task wakes up, handle all of the messages at
each port where the SigBit is set. There may be more than one message per port, or no messages
at the port. Make sure that you ReplyMsgO to all messages that are not replies themselves. If
you have no signal bits to WaitO on, use DelayO or WaitTOFO to provide a measured delay.

• Tasks (and processes) execute in 680x0 user mode. Supervisor mode is reserved for interrupts,
traps, and task dispatching. Take extreme care if your code executes in supervisor mode.
Exceptions while in supervisor mode are deadly.

• Most system functions require a particular execution environment. All DOS functions and any
functions that might call DOS (such as the opening of a disk-resident library, font, or device)
can only be executed from a process. A task is not sufficient. Most other ROM kernel functions
may be executed from tasks. Only a few may be executed from interrupts.

• Never disable interrupts or multitasking for long periods. If you use ForbidO or DisableO,
you should be aware that execution of any system function that performs the WaitO function
will temporarily suspend the ForbidO or DisableO state, and allow multitasking and interrupts
to occur. Such functions include almost all forms of DOS and device I/O, including common

“stdio” functions like printfO.

• Never tie up system resources unless it is absolutely necessary. For example, if your program
does not require constant use of the printer, open the printendevice only when you need it. This
will allow other tasks to use the printer while your program is running. You must provide a
reasonable error response if a resource is not available when you need it.

22 CDTV Developers Reference Manual

3.1.4 Getting Started.General Amiga Development Guidelines

• All data for the custom chips must reside in Chip memory (type MEMF_CHIP). This includes
bitplanes, sound samples, trackdisk buffers, and images for sprites, bobs, pointers, and gadgets.
The AllocMemO call takes a flag for specifying the type of memory. A program that specifies
the wrong type of memory may appear to run correctly because many Amigas have only Chip
memory. (On all models of the Amiga, the first 512K of memory is Chip memory and in some
later models. Chip memory may occupy the first one or two megabytes).

However, once expansion memory has been added to an Amiga (type MEMR_FAST), any
memory allocations will be made in the expansion memory area by default. Hence, a program
can run correctly on an unexpanded Amiga which has only Chip memory while crashing on an
Amiga which has expanded memory. A developer with only Chip memory may fail to notice
that memory was incorrectly specified.

Most compilers have options to mark specific data structures or object modules so that they
will load into Chip RAM. Some older compilers provide the Atom utility for marking object
modules. If this method is unacceptable, use the AllocMemO call to dynamically allocate Chip
memory, and copy your data there.

When making allocations that do not require Chip memory, do not explicitly ask for Fast
memory. Instead ask for memory type MEMF_PUBLIC or OL as appropriate. If Fast memory
is available, you will get it.

• Never use software delay loops! Under the multitasking operating system, the time spent in a
oop can be better used by other tasks. Even ignoring the effect it has on multitasking, timing

loops are inaccurate and will wait different amounts of time depending on the specific model
of Amiga computer. The timer.device provides precision timing for use under the multitasking
system and it works the same on all models of the Amiga. The AmigaDOS DelayO function
or the graphics.tibrap//WaitTOFO function provide a simple interface for longer delays. The
8520 I/O chips provide timers for developers who are bypassing the operating system (see the
Amiga Hardware Reference Manual for more information).

• Always obey structure conventions!

All non-byte fields must be word-aligned. Longwords should be longword-aligned for perfor¬
mance.

All address pointers should be 32 bits (not 24 bits). The upper byte must never be used for
data.

Fields that are not defined to contain particular initial values must be initialized to zero. This
includes pointer fields.

All reserved or unused fields must be initialized to zero for future compatibility.

Data structures to be accessed by the custom chips, public data structures (such as a task control
block), and structures which must be longword aligned must NOT be allocated on a program’s

Dynamic allocation of structures with AllocMemO provides longword aligned memory of a
specified type with optional initialization to zero, which is useful in the allocation of structures.

Programming and CDTV Multimedia 23

3.1.4 Getting Started:General Amiga Development Guidelines I

For 68010/68020/68030/68040 compatibility

Special care must be taken to be compatible with the entire family of 68000 processors:

• Do not use the upper 8 bits of a pointer for storing unrelated information. The 68020, 68030,

and 68040 use all 32 bits for addressing.

• Do not use signed variables or signed math for addresses.

• Do not use software delay loops, and do not make assumptions about the order in which

asynchronous tasks will finish.

• The stack frame used for exceptions is different on each member of the 68000 family. The type
identification in the frame must be checked! In addition, the interrupt autovectors may reside

in a different location on processors with a VBR register.

• Do not use the MOVE SR,<dest> instruction! This 68000 instruction acts differently on other
members of the 68000 family. If you want to get a copy of the processor condition codes, use

the exec, library/GetCCQ function.

• Do not use the CLR instruction on a hardware register which is triggered by Write access. The
68020 CLR instruction does a single Write access. The 68000 CLR instruction does a Read
access first, then a Write access. This can cause a hardware register to be triggered twice. Use

MOVE.x #0, <address> instead.

• Self-modifying code is strongly discouraged. All 68000 family processors have a pre-fetch
feature. This means the CPU loads instructions ahead of the current program counter. Hence,
if your code modifies or decrypts itself just ahead of the program counter, the pre-fetched
instructions may not match the modified instructions. The more advanced processors prefetch
more words. If self-modifying code must be used, flushing the cache is the safest way to

prevent troubles.

• The 68020,68030 and 68040 processors all have instruction caches. These caches store recently
used instructions, but do not monitor writes. After modifying or directly loading instructions,
the cache must be flushed. See the exec.library/CacheClearUO Autodoc for more details. If
your code takes over the machine, flushing the cache will be trickier. You can account for the
current processors, and hope the same techniques will work in the future:

CACRF Clearl

ClearICache:

cic_04 0:
cic exit:

EQU $0008 ;Bit for clear instruction cache

/Supervisor mode only. Use only if you have taken
/over the machine. Read and store the ExecBase
/processor AttnFlags flags at boot time, call this

/code only if the n68020 or better" bit was set.

dc.w $ 4E7A,$0002 /MOVEC CACR,D0
tst.w dO /movec does not affect CC
bmi*. s cic 040 /A 68040 with enabled cache!

ori.w #CACRF Clearl,dO
dc.w $4E7B,^0002 /MOVEC D0,CACR
bra.s cic exit
dc.w $ f458 ;CPUSHA (IC)

24 CD TV Developers Reference Manual

3.1.4 Getting Started.General Amiga Development Guidelines I

Hardware Programming Guidelines

If you find it necessary to program the hardware directly, then it is your responsibility to write code
that will work correctly on the various models and configurations of the Amiga. Be sure to properly
request and gain control of the hardware resources you are manipulating, and be especially careful
in the following areas:

• Kickstart 2.0 uses the 8520 Complex Interface Adaptor (CIA) chips differently than
1.3 did. To ensure compatibility, you must always ask for CIA access using the
cia.resource/AddlCKVectorO and RemICRVectorO functions. Do not make assumptions
about what the system might be using the CIA chips for. If you write directly to the CIA chip
registers, do not expect system services such as the trackdisk.device to function. If you are
leaving the system up, do not read or write to the CIA Interrupt Control Registers directly; use
the cia.resource/AblelCRO* and SetICRO functions. Even if you are taking over the machine,
do not assume the initial contents of any of the CIA registers or the state of any enabled
interrupts.

• All custom chip registers are Read-only or Write-only. Do not read Write-only registers, and
do not write to Read-only registers.

• Never write data to, or interpret data from the unused bits or addresses in the custom chip space.
To be software-compatible with future chip revisions, all undefined bits must be set to zeros on
writes, and must be masked out on reads before interpreting the contents of the register.

• Never write past the current end of custom chip space. Custom chips may be extended or
enhanced to provide additional registers, or to use bits that are currently undefined in existing
registers.

• Never read, write, or use any currently undefined address ranges or registers. The current and
future usage of such areas is reserved by Commodore and is subject to change.

• Never assume that a hardware register will be initialized to any particular value. Different
versions of the OS may leave registers set to different values. Check the Amiga Hardware
Reference Manual to ensure that you are setting up all the registers that affect your code.

Additional Assembler Development Guidelines

If you are writing in assembly language there are some extra rules to keep in mind in addition to
those listed above.

• Never use the TAS instruction on the Amiga. System DMA can conflict with this instruction’s
special indivisible read-modify-write cycle.

• System functions must be called with register A6 containing the library or device base. Libraries
and devices assume A6 is valid at the time of any function call. Even if a particular function
does not currently require its base register, you must provide it for compatibility with future
system software releases.

• Except as noted, system library functions use registers DO, Dl, AO, and A1 as scratch registers
and you must consider their former contents to be lost after a system library call. The contents
of all other registers will be preserved. System functions that provide a result will return the
result in DO.

Programming and CDTV Multimedia 25

3.1.4 Getting Started General Amiga Development Guidelines

• Never depend on processor condition codes after a system call. The caller must test the returned
value before acting on a condition code. This is usually done with a TST or MOVE instruction.

26 CDTV Developers Reference Manual

3.1.5 Getting Started:2.0 Compatibility Problem Areas

2.0 Compatibility Problem Areas

General Compatibility Problem Areas

One sure fire way to write incompatible software is to fail to follow the Amiga programming
guidelines listed in the beginning of your Amiga ROM Kernel and Amiga Hardware manuals.
Please read the guidelines and follow them!

The following improper Amiga programming practices are likely to fail on new ROMs or haidware:

• Calling ROM code directly.

• Directly or indirectly reading or writing random memory addresses or low memory (especially
location zero) due to improperly initialized pointers or structures. Use Mungwall and Enforcer
when writing and testing your code!

• Assuming addresses/location/amounts of RAM or system structures.

• Requiring all free RAM.

• Mishandling 32-bit addresses. For example, using signed math or signed comparisons on
addresses, or doing a BOOL or WORD test to determine if a pointer is non-zero.

• Overwriting memory allocations. With 32-bit addresses, a 1-byte overwrite of a string array
can wipe out the high byte of a pointer or stack return address. This bug could go unnoticed
on a 24-bit address machine (e.g., A500, A2500, etc.) but crash the system or cause other
problems on an A3000.

• Shaving stack size too close. System function stack usage changes with each OS release.

• Improper flags or garbage in system structures. A bit that means nothing under one OS may
drastically change the behavior of a function in a newer version of the OS. Clear structures
before using, and use correct flags.

• Passing garbage in previously unused upper bytes of function arguments (for example, the
upper word of the ULONG AvailFontsO Flags parameter).

• Improper register or condition code handling. Do not assume registers DO-D1/AO-A1 are
preserved after system calls! Some function calls happen to preserve some registers. This
can change in any revisions of the OS. In some cases we have modifed the values returned
in registers to keep certain applications from failing under 2.0. We do not guarantee those
modifications will remain in place. Condition codes are also in an undefined state on the return
from a system call. Assembler code must test (TST,MOVE,CMP, etc.) DO results before
branching on condition codes. Use Scratch by Bill Hawes (via the scratchall script) to catch
scratch register misuse in assembler code.

• Misuse of function return values. Use function prototypes and read the Autodocs for the
functions you are using. Some system functions return just success or failure, or nothing at all

Programming and CDTV Multimedia 27

3.15 Getting Started:2.0 Compatibility Problem Areas

(void). In such cases, the value which the function happens to return must not be used except
as it is documented.

• Calling system library functions from assembler without placing the library base pointer in A6.
All system functions may assume that their library’s base pointer is in A6. A function’s need
to reference its library base can change in different OS revisions.

• Depending on unsupported side effects or undocumented behavior. Be sure to read the RKM
chapters, Autodocs, and include file comments.

• Poking/peeking system private structures. Do not poke or peek any system structure unless
told to do so in official Commodore documentation.

• Assuming current choices, configurations or initial values. If the current possibilities are A, B,
or C, do not assume C if it isn’t A orB. Check specifically for the choices currently implemented
and provide default behavior for unexpected values.

• Failure to properly allocate resources before using them.

• Failure to properly close/deallocate resources.

• Improper reading/writing of hardware registers. You must mask out bits you are not interested
in on reads, and write undefined bits as zero.

• Assuming initial values of hardware registers. If you are going direct to the hardware, do not
depend on the initial values of any hardware registers. The settings may not be the same on
different versions of the OS or from boot to boot. Always set up all of the hardware registers
that affect your code, o Processor speed dependencies such as software delay loops.

• Processor instruction dependencies. Do not use instructions which are privileged on any
Motorola 68xxx family processor. Do not use CLR on a hardware register which is triggered
by any access (use MOVE #0 instead). The 68000 CLR instruction performs two accesses
(Read, then Write). The 68020 and higher CLR instruction performs just one access.

• Depending on or failing to account for cache or prefetch effects. Self-modifying or trackdisk-
loaded code requires cache flushes (see the exec.library/CacheCIearUOfunction).

Amiga debugging tools such as Enforcer, Mungwall and Scratch can find many program bugs
that may affect compatibility. A program that is Erforcer/Mungwall/Scratch clean stands a much
better chance of working well under current and future versions of the OS. These tools are on the
Denver/Milano DevCon disks. Enforcer and Mungwall are also on the kickfile disks.

2.0 Changes That Can Affect Compatibility

There are several 2.0-specific areas where OS changes and enhancements can cause compatibility
problems for some software.

28 CDTV Developers Reference Manual

3.15 Getting Started:2.0 Compatibility Problem Areas

Exec

• Do not jump to location $FC0002 as part of performing a system RESET. Many RESET
functions jumped to what was the start of the ROM under 1.3. The 2.0 ROM is twice the
size. We’ve added a temporary compatibility hack called “Kickety-Split” to the 2.04 Kickstart
ROM. The ROM is split into two halves with a redirecting jump at $FC0002. This hack does
not appear on the A3000 and due to space considerations will not appear on future machines.

• Everything has moved.

• The Supervisor stack is not in the same place as it was under 1.3. This has caused problems for
some games that completely take over the Amiga. If your program goes into Supervisor mode,
you must either respect allocated memory or provide your own Supervisor stack when taking
over the machine.

• ExecBase is moved to expansion memory if possible. Previously, ExecBase would only end up
in one of two fixed locations. As a result, ColdCapture may be called after expansion memory
has been configured. Great pains were taken to make this compatible.

• Exception/Interrupt vectors may move. This means the 68010 and above Vector Base Register
(VBR) may contain a non-zero value. Poking assumed low memory vector addresses may have
no effect. You must read the VBR on 68010 and above to find the base.

• No longer tolerant of wild ForbidO counts. Under 1.3, sometimes this bug could go unnoticed.
Make sure that all ForbidOs are matched with one and only one Permit (and vice versa).

• When an Exec device gets an IORequest, it must validate io_Command. If the io_Command
is 0 or out of range, the device must return IOERR_NOCMD and take no other action. The
filesystem now sends new commands and expects older devices to properly ignore them.

• A 2.0 fix to task switching allows a busy task to properly regain the processor after an interrupt
until either its quantum (4 vertical blanks) is up or a higher priority task preempts it. This
can dramatically change the behavior of multitask programs where one task busy- loops while
another same-priority task WaitOs. See ‘Task Switching” in the “Additional Information”
section below.

Expansion

ExpansionBase is private—use FindConfigDevO.

• Memory from contiguous cards of the same memory type is automatically merged into one
memory pool.

Strap

• romboot.library is gone.

• audio.device' cannot be OpenDeviceOed by a boot block program because it is not
yet InitResidentOed. If OpenDeviceO of audio.device fails during strap, you must
FindResidentO/InitResidentO audio.device and then try OpenDeviceO again.

• Boot from other floppies (+5,-10,-20,-30) is possible.

• Undocumented system stack and register usage at Diag and Boot time have changed.

Programming and CDTV Multimedia 29

3.1.5 Getting Started:2.0 Compatibility Problem Areas

DOS
• DOS is now written in C and assembler, not BCPL. The BCPL compiler artifact which caused

DO function results to also be in D1 is gone. 2.0 compatibility patches which return some DOS
function results in both DO and D1 are not guaranteed to remain in the next release. Fix your

programs! Use Scratch to find these problems in your code.

• DOS now has a real library base with normal LVO vectors.

• Stack usage has all changed (variables, direction).

• New packet and lock types. Make sure you are not passing stack garbage for the second

argument to LockO.

• The Process structure is bigger. “Rolling your own” Process structure from a task fails.

• Unless documented otherwise, you must be a process to call DOS functions. DOS function
dependence on special process structures can change with OS revisions.

Audlo.devlce
• Now not initialized until used. This means low memory open failure is possible. Check your

return values from OpenDeviceO- This also means audio.device cannot be opened during 2.0
Strap unless InitResidentOed first. If OpenDeviceO of audio.device fails during strap, you
must FindResidentO/InitResidentO audio.device, and then try OpenDeviceO again. There
will be a small memory loss (until reboot) generated by the first opener of audio.device or
narrator.device (memory used in building of audio.device's base).

Gameport.devlce

• Initial state of hardware lines may differ.

Serial.devlce

• Clears io_Device on CloseDeviceO (since 1.3.2)

Tlmer.devlce
• The most common mistake programmers make with timer.device is to send off a particular

timerequest before the previous use of that timerequest has completed. Use 10-Torture to

catch this problem.

• IO-QUICK requests may be deferred and be replied as documented.

• VBLANK timer requests, as documented, now wait at least as long as the full number of
VBlanks you asked for. Previously, a partial vertical blank could count towards your requested
number. The new behavior is more correct and matches the docs, but it can cause VBlank
requests to now take up to 1 VBlank longer under 2.0 as compared to 1.3. For example, a 1/10
second request, may take 6—7 Vblanks instead of 5—6 VBlanks, or about 15% longer.

30 CDTV Developers Reference Manual

3.15 Getting Started:2.0 Compatibility Problem Areas

Trackdlsk

• Private trackdisk structures have changed. See trockdisk.doc for a compatible REM-
CHANGEINT.

• Buffer is freeable, so low memory open failure is possible.

• Do not disable interrupts (any of them) and then expect trackdisk to function while they are
disabled.

CIA Timers

• System use of CIA timers has changed. Don’t peek timers you think the system is using in a
particular manner.

• Don’t depend on initial values of CIA registers.

• Don’t mess with CIABase. Use cia.resource.

• If your code requires hardware level CIA timers, allocate the timers using cia.resource
AddICRVectorO! Very important! Operating system usage of the CIA timers has changed.
The new 2.0 timer.device (“Jumpy the Magic Timer Device”) will try to jump to different CIAs
so programs that properly allocate timers will have a better chance of getting what they want.
If possible, be flexible and design your code to work with whatever timer you can successfully
allocate.

• OS usage of INT6 is increasing. Do not totally take over INT6, and do not terminate the server
chain if an interrupt is not for you.

Other Hardware Issues

• Battery-backed clock is different on A3000. Use battclock.resource to access the realtime
clock if battclock.resource can be opened.

• A 68030 hardware characteristic causes longword-aligned longword writes to allocate a valid
entry in the data cache, even if the hardware area shouldn’t be cached. This can cause problems
for I/O registers and shared memory devices. To solve this, either:

1. Don’t do it.

2. Flush the cache

or

3. Use Enforcer Quiet.

See the Motorola 68030 manual under the description of the Write Allocate bit (which must be
set for the Amiga to run with the Data Cache).

Programming and CDTV Multimedia 31

3.U Getting Started:2.0 Compatibility Problem Areas

Intuition

• Private IBase variables have moved/changed. Reading them is illegal. Writing them is both
illegal and dangerous.

• Poking IBase MaxMouse variables is now a no-op, but please stop poking when Intuition
version is >35.

• If you are opening on the Workbench screen, be prepared to handle larger screens, new modes,
new fonts, and overscan. Also see “Font” below.

• Screen TopEdge and LeftEdge may be negative.

• Left-Amiga-Select is used for dragging large screens. Do not use left-Amiga-key combinations
for application command keys. The left-Amiga key is reserved for system use.

• For compatibility reasons, GetScreenDataO lies if the Workbench screen is a mode only
available after release 1.3. It will try to return the most sensible mode that the old OpenScreenO
can open. This was necessary to keep applications that cloned the Workbench screen from
having problems. To properly handle new modes, see LockPubScreenO and GetVPModelDO,
and the SA_DisplayID tag for OpenScreenThgsO.

• Using combined RAWKEY and VANILLAKEY now gives VANILLAKEY messages for
regular keys, and RAWKEY messages for special keys (fkeys, help, etc.)

• Moving a SIMPLE REFRESH window does not necessarily cause a REFRESHWINDOW
event because layers now preserves all the bits it can.

• Sizing a SIMPLE-REFRESH window will not clear it.

• MENUVERIFY/REQ VERIFY/SIZE VERIFY can time out if you take too long to ReplyMsgO-

• Menu key equivalents are ignored while string gadgets are active.

• You can’t type control characters into string gadgets by default. Use Ctrl-Amiga-char to type
them in or use IControl Prefs to change the default behavior.

• Width and Height parameters of AutoRequest are ignored.

• New default colors, new gadget images.

• JAM1 rendering/text in border may be invisible gadgets over default colors.

• The cursor for string gadgets can no longer reside outside the cleared container area. If your
gadget is, for example, 32 pixels wide with MaxChars of 4, then all 32 pixels will be cleared,
instead of just 24 as was true in 1.3.

• Applications and requesters that fail to specify desired fonts will get user 2.0 Font Pref fonts
that may be much larger or proportional in some cases. Screen and window titlebars (and
their gadgets) will be taller when accommodating a larger font. Applications which open on
the Workbench screen must adapt to variable size titlebars. Any application which accepts
system defaults for its screen, window, menu, Text or IntuiText fonts must adapt to different
fonts and titlebar sizes. String gadgets whose heights are too small for a font will revert to
a smaller ROM font. There are now 2 different user-specifiable default system fonts which
affect different Intuition features. This can lead to mismatches in mixed gadgets and text. For
more information on where various system fonts come from and how they can be controlled,
see “Intuition Fonts” in the “Additional Information” section below.

32 CDTV Developers Reference Manual

3.15 Getting Started:2.0 Compatibility Problem Areas

• Don’t modify gadgets directly without first removing them from the gadget list, unless
you are using a system function designed for that purpose, such as NewModifyPropO or
SetGadgetAttrsO-

• Don’t rely on NewModifyPropO to fully refresh your prop gadget after you’ve changed values
in the structure. NewModifyPropO will only correctly refresh changes which were passed to
it as parameters. Use Remove/Add/RefreshGListO for other kinds of changes.

• Custom screens must be of type CUSTOMSCREEN or PUBLICSCREEN. Other types are
illegal. One application opens its screen with NewScreen.Type - 0 (instead of CUSTOM-
SCREEN, OxOF). Then, when it open its windows, it specifies NewWindow.Type ofO and
NewWindow.Screen - NULL, instead of Type=CUSTOMSCREEN and Screen=(its screen).
That happened to work before, but not anymore.

• Referencing IntuiMessage->IAddress as a Gadget pointer on non-Gadget IDCMP mes¬
sages, or as a Window pointer (rather than looking at the proper field IntuiMessage-
>IDCMPWindow) may now cause Enforcer hits or crashes. The LAddress field used to
always contain a pointer of some type even for IDCMP events for which no IAddress value is
documented. Now, for some IDCMP events, IAddress may contain other data (a non-address,
possibly an odd value which would crash a 68000 based system).

• Using Intuition flags in the wrong structure fields (for example, using ACTTVEWINDOW
instead of ACTIVATE). To alleviate this problem, 2.0 has introduced modem synonyms
that are less confusing than the old ones. For example, IDCMP_ACTIVEWINDOW and
WFLG-ACTIVATE. This particular example of confusion (there are several) was the nasti¬
est, because IDCMP_ACTIVEWINDOW, when stuffed into NewWindow.FIags, corresponds
numerically to WFLG_NW_EXTENDED, which informs Intuition that the NewWindow struc¬
ture is immediately followed by a TagList, which isn’t there! Intuition does some validation
on the Thglist pointer in order to partially compensate. To make your compiler use the new
synonyms only, add this line to your code before Intuition include files:

• #define INTUI_V36_NAMES_ONLY.

• Do not place spaces into the StringInfo->Buffer of a LONGINT string gadget. Under 1.3, it
turned out that worked, but under 2.0, the validation routine that checks for illegal keystrokes
looks at the contents for illegal (i.e., nonnumeric) characters, and if any are found assumes that
the user typed an illegal keystroke. The user’s only options may be shift-delete or Amiga-X.
Use the correct justification instead.

• If you specify NULL for a font in an IntuiText, don’t assume you’ll get Topaz 8. Either
explicitly supply the font you you need or be prepared to size accordingly. Otherwise, your
rendering will be wrong, and the user will have to reset his Preferences just to make your
software work right.

• Window borders are now drawn in the screen’s DetailPen and BlockPen rather than the
window’s pens. For best appearance, you should pass an SA_Pens array to OpenScreenO-
This can be done in a backwards compatible manner with the ExtNewScreen structure and the
NS -EXTENDED flag.

• The system now renders into the full width of window borders, although the widths themselves
are unchanged.

• Window borders are filled upon activation and inactivation.

Programming and CDTV Multimedia 33

Getting Started:!.0 Compatibility Problem Areas 3.15

• Window border rendering has changed significantly for 2.0. Note that the border dimensions are
unchanged from 1.x (Look at window->BorderLeftyTop/Width/Height if you don’t believe
it!). If your gadget intersects the border area, although it may have looked OK under 1.3,
a visual conflict may occur under 2.0. If Intuition notices a gadget which is substantially in
the border but not declared as such, it treats it as though it is in the border (this is called
“bordersniffing”). Never rely on Intuition to sniff these out for you; always declare them
explicitly (see the Gadget Activation flags GACT—RIGHTBORDER, etc.). See 4 Intuition
Gadgets” and “Window Borders” in the “Additional Information” section below.

Preferences

• Some old Preferences sturcture fields are now ignored by SetPrefs (e.g., FontHeight). SetPrefs
also stops listening to the pointer fields as soon as a new-style pointer is passed to Intuition
(new-style pointers can be taller or deeper).

• Preferences ViewX/YOffset only applies to the default mode. You cannot use these fields to

move the position of all modes.

• The Preferences LACEWB bit is not necessarily correct when Workbench is in a new display

mode (akin to GetScreenDataO).

Workbench

• The Workbench GUI now has new screen sizes, screen top/left offsets, depths, modes, and

fonts.

• Default Tool now searches paths.

• New Look (boxed) icons take more space.

• Do not use icons which have more 1-bits set in PlanePick than planes in the ImageData (one
IFF-to-Icon utility does this). Such icons will appear trashed on deeper Workbenches.

• New Look colors have black and white swapped (as compared to 1.3).

• The Workbench screen may not be open at startup-sequence time until some output occurs to
the initial Shell window. This can break startup-sequence-started games that think they can
steal WB’s screen bitplanes. Do not steal the WB screen’s planes (For compatibility, booting
off pre-2.0 disks forces the initial screen open. This is not guaranteed to remain in the system).
Use startup code that can detach when run (such as cback.o) and use CloseWorkbenchO to
regain the screen’s memory.

Under 1.3 the Workbench Screen and initial CLI opened before the first line in s:startup-sequence.
Some naughty programmers, in an attempt to recover memory, would search for the bitplane pointers
and appropriate the memory for their own use. This behavior is highly unsafe.

By default 2.0 opens the initial CLI on the first _output_ from the s:startup-sequence. This allows
screen modes and other parameters to be set before the user sees the screen. However, this broke so
many programs that we put in the “silent-startup” hack. A disk installed with 1.3 install opens the
screen as before. A disk installed under 2.0 opens silently. Never steal the Workbench bitplanes.
You don’t know where they are, how big they are, what format they may be in, or even if they are
allocated. Recovering the memory is a bit tricky.

34 CDTV Developers Reference Manual

3.13 Getting Started:2.0 Compatibility Problem Areas

Under 2.0
Simply avoid any output from your s:startup-sequence. If your program opens a screen it will

be the first screen the user ever sees. Note that if ENDCLI is ever hit, the screen will pop open.

Under 13
After ENDCLI, call the CloseWorkbenchO function to close the screen. This also woiks

under 2.0. Loop on Close WorkbenchO with a delay between loops. Continue looping until

Close WorkbenchO succeeds or too much time has passed. Note that a new program called

EndRun is available for starting non-retuming programs from the startup-sequence. EndRun

will reduce memory fragmentation and will close Workbench if it is open. EndRun.lzh will be

available in Commodore’s Amiga listings area on BIX.

Layers

• Use NewLayerlnfoO to create, not FattenLayerInfoO> ThinLayerlnfoO or InitLayersO.

• Simple-refresh preserves all of the pixels it can. Sizing a SIMPLEJREFRESH window no
longer clears the whole window.

• Speed of layer operations is different. Don’t depend on layer operations to finish before or after
other asynchronous actions.

Graphics

• Do not rely on the order of Copper list instructions. For example, 2.0’s MrgCopO builds

different Copper lists to that of 1.3, by including new registers in the list (e.g., MOVE

xxxx,DIWHIGH). This changes the positions of the other instructions. We know of one

game that “assumes” the BPLxPTRs would be at a certain offset in the Copper list, and that is

now broken on machines running 2.0 with the new Denise chip.

• Graphics and layers functions which use the blitter generally return after starting the final blit.

If you are mixing graphics rendering calls and processor access of the same memory, you

must WaitBlitO before touching (or deallocating) the source or destination memory with the

processor. For example, the TextO function was sped up for 2.0, causing some programs to
trash partial lines of text.

• ColorMap structure is bigger. Programs must use GetCoIorMapO to create one.

• Blitter rtns decide ascend/descend on 1st plane only.

• Changing the display mode of an existing screen or viewport while it is open is still not a
supported operation.

• GfxBase DisplayFlags and row/cols may not match Workbench screen.

• Do not hard code modulo values—use BitMap->BytesPerRow.

• If the graphics Autodocs say that you need a TmpRas of a certain size for some functions, then

you must make that the minimum size. In some cases before 2.0, you may have gotten away
with using a smaller TmpRas with some functions (for example FloodO). To be more robust,

Graphics now checks the TmpRas size and will fail the function call if the TmpRas is too
small.

Programming and CDTV Multimedia 35

3.1 J Getting Started:2.0 Compatibility Problem Areas

• ECS chips under 2.0 use a different method of generating displays. The display window
registers now control DMA.

• LoadRGB40 used to poke colors into the active copperlist with no protection against deal¬
location of that copperlist while it was being poked. Under 2.0, semaphore protection of the
copperlist was added to LoadRGB4(). This semaphore protection makes it totally incorrect
and extremely dangerous to call LoadRGB40 during an interrupt. The general symptom of
this problem is that a system deadlock can be caused by dragging one screen up and down while
another is cycling. Color cycling should be performed from within a task, not an interrupt.
Note that in general, the only functions which may be safely called from within an interrupt are
the small list of Exec functions documented in the “Exec: Interrupts” chapter of the 1.3 Amiga
ROM Kernel Manual: Libraries and Devices.

Fonts

• Some font format changes (old format supported).

• Private format of .font files has changed (use FixFonts to create).

• Default fonts may be larger, proportional.

• Topaz is now sans-serif.

• Any size font will be created via scaling as long as TextAttr.Flags FPF-DESIGNED bit is not
set. If you were asking for an extreme size, like size 1 to get the smallest available, or 999 to
get the largest available, you will get a big (or very, very small) surprise now.

» Do not use -1 for TextAttr.Flags or TextAttnStyles, nor as the flags for AvailFontsO (one
high bit now causes AvailFontsO to return different structures). Only set what you know you
want. A kludge has been added to the OS to protect applications which currently pass -1 for
AvailFontsO flags.

CU/Shell

• Many more commands are now built-in (no longer in C:). This can break installation scripts
that copy C:commandname, and programs that try to LockO or OpenO C:commandname to
check for the command’s existence.

• The limit of 20 CLI processes is gone and the DOSBase CLI table has changed to accommodate
this. Under V36 and higher, you should use the new 2.0 functions rather than accessing the
CLI table directly.

• Shell windows now have Close Gadgets. The EOF character is passed for the Close Gadget
of a Shell. This is -1L with CON: getcharO, and the Close Gadget raw event ESC seq with
RAW:.

• Shells now use the simple-refresh character-mapped console (see “Console” below).

36 CDTV Developers Reference Manual

3.15 Getting Started:2.0 Compatibility Problem Areas

Console

• By default, CON: now opens SIMPLE-REFRESH windows using the V36/V37 console char¬
acter mapped mode. Because of some differences between character mapped consoles and
SMART_REFRESH non-mapped consoles, this may cause incompatibilities with some ap¬
plications. For example, the Amiga private sequences to set left/top offset, and set line/page
length behave differently in character mapped console windows. The only known workaround
is to recompile asking for a CON: (or RAW:) window using the SMART flag.

• Simple refresh/character mapped console windows now support the ability to highlight and copy
text with the mouse. This feature, as well as pasting text should be transparent to programs
which use CON: for console input and output. Pasted text will appear in your input stream as
if the user had typed it.

• While Conclip (see s.startup-sequence) is running, programs may receive “<CSI>0 v” in their
input stream indicating the user wants to paste text from the clipboard. This shouldn’t cause
any problems for programs which parse correctly (however we know that it does; the most
common problems are outputting the sequence, or confusing it with another sequence like that
for FKEY 1 which is “<CSI>0 ”).

• The console.device now renders a ghosted cursor in inactive console windows (both
SMART-REFRESH, and SIMPLE-REFRESH with character maps). Therefore, rendering
over the console’s cursor with graphics.library calls can trash the cursor, if you must do this,
first turn off the cursor.

• Some degree of unofficial support has been put in for programs which use SMART-REFRESH
console windows, and use graphics.library calls mixed with console.device sequences to scroll,
draw text, clear, etc. This is not supported in SIMPLE-REFRESH windows with character
maps, and is strongly discouraged in all cases.

• dosing an Intuition window before closing the attached console.device worked in the past; it
will now crash or hang the machine.

• Under 1.2-1.3, vacated portions of a console window (e.g., areas vacated because of a clear or
a scroll) were filled in with the character cell color. As of V36 this is no longer true, vacated
yeas are filledin with the global background color which can be set using the SGR sequence
“<ESC>[>##m” where ## is a value between 0-7. In order to set the background color under
V36/V37, send the SGR to set background color, and a FORMFEED to clear the screen.

• Note that SIMPLE—REFRESH character mapped consoles are immediately redrawn with the
global background color when changed—this is not possible with SMART-REFRESH win¬
dows.

Programming and CDTV Multimedia 37

3.15 Getting Started:2.0 Compatibility Problem Areas

Additional Information

Task Switching
The 1.3 Kickstart contained two task switching bugs. After an interrupt, a task could lose the CPU
to another equal priority task, even if the first task’s time was not up. The second bug allowed a task
whose time was up to hold on to the CPU either forever or until a higher priority task was scheduled.
Two busy-waiting tasks at high priority would never share the CPU. Because the input.device runs
at priority 20, usually the effect of these bugs was masked out for low priority tasks. Because of the

bugs, the ExecBase->Quantum field had little effect.

For 2 0, a task runs until either its Quantum is up, or a higher priority task preempts it. When the
Quantum time is up, the task will now lose the CPU. The Quantum was set to 16/60 second for

1.3, and 4/60 second for 2.0.

In general, the 2.0 change makes the system more efficient by eliminating unnecessary task switches
on interrupt-busy systems (for example, during serial input). However, the change has caused
problems for some programs that use two tasks of equal priority, one busy-waiting and one WaitO
ing on events such as serial input Previously, each incoming serial character interrupt would cause
task context switch allowing the event handling task to run immediately. Under 2.0 the two tasks

share the processor fairly.

Intuition Gadgets and Window Borders
If 2.0 Intuition finds a gadget whose hit area (gadget Left/Top/ Width/Height) is substantially inside
the border, it will be treated as though it was declared in the border. This is called “bordersniffing .
Gadgets declared as being in the border or detected by Intuition as being in the border are refreshed

each time after the border is refreshed, and thus aren t clobbered.

Noteworthy special cases:

1. A gadget that has several pixels not in the border is not bordersniffed. An example would be
an 18-pixel high gadget in the bottom border of a SIZEBBOTTOM window. About half the

gadget will be clobbered by the border rendering.

2. A gadget that is not substantially in the border but has imagery that extends into the border

cannot be sniffed out by Intuition.

3. A gadget that is substantially in the border but has imagery that extends into the main part
of the window will be sniffed out as a border gadget, and this could change the refreshing
results. A common trick to put imagery in a window is to put a lxl or 0x0 dummy gadget
at window location (0,0) and attach the window imagery to it. To support this, Intuition will

never bordersniff gadgets of size lxl or smaller.

All these cases can be fixed by setting the appropriate GACT_xxxBORDER gadget Activation

flag.

4. In rare cases, buttons rendered with Border structures and JAM1 text may appear invisible
under 2.0. We apologize, but there is nothing that can be done on our end, even if the application

technically did nothing wrong.

38 CDTV Developers Reference Manual

3.15 Getting Started:2.0 Compatibility Problem Areas

Intuition Fonts

The following table shows where the Intuition gets its fonts from:

What you tell OpenScreen Screen’s Font

A. NewScreenJFont = myfont
B. NewScreen.Font = NULL
C. {SA_Font, myfont}
D. {SA_SysFont, 0}
E. {SA_SysFont, 1}

myfont

GfxBase->DefaultFont
myfont

GfxBase->DefaultFont
Font Prefs Screen text

Window’s RPort’s Font

myfont

GfxBase->DefaultFont
myfont

GfxBase->DefaultFont
GfxBase->DefaultFont

Notes:

A and B are the options that existed in releases prior to V36.

C and D are new V36 tags that are equivalent to A and B respectively.

E is a NEW option for V36. The Workbench screen uses this option.

GfxBase->DefaultFont will always be monospace. This is the “System Default Text” from Font
Preferences.

The Screen Text” choice from Font Preferences can be monospace or proportional.

myfont can be any font of the programmer’s choosing, including a proportional one. This is true
under all releases of the OS.

The menu bar, window titles, menu items, and the contents of a string gadget use the screen’s font.
The font used for menu items can be overridden in the item’s IntuiText structure. Under V36 and
higher, the font used in a string gadget can be overridden through the StringExtend structure. The
font of the menu bar and window titles cannot be overridden. Because the 2.0 Workbench screen
uses option E to specify its Screen font from the user’s Screen font Preferences, applications which
open windows on the Workbench screen may get very large or proportional fonts in their menu bars,
window titles, menu items and string gadgets.

To predict your window’s titlebar height before you call OpenWindowO:

topborder = screen->WBorTop + screen- >Font- >ta_YSize + 1

The screen s font may not legally be changed after a screen is opened.

Be sure the screen cannot go away on you. This is true if:

1. You opened the screen yourself.

2. You currently have a window open on the screen.

3. You currently hold a lock on this screen (see LockPubScreenO).

IntuiText rendered into a window (either through PrintITextO or as a gadget’s GadgetText) defaults
^ WLndow RastPort font» but can be overridden using its ITextFont field. Text rendered with

the TextO graphics.library call appears in the Window RastPort font.

The Window’s RPort’s font shown above is the initial font that Intuition sets for you in your
window’s RastPort. It is legal to change that subsequently with SetFontQ.

Programming and CDTV Multimedia 39

3.2.1 CDTV Specifics:CDTV Feature Overview

CDTV Feature Overview

While CDTV has all of the features of the standard Amiga (with the notable exception of a standard
alphanumeric keyboard and a mouse), CDTV has many additional features not found in the standard
Amiga. The following is a description of some of the more interesting features of the standard

cdtv.device

The cdtv.device is a standard Amiga Exec device that provides access to and control of the CD-ROM
mechanism. The cdtv.device allows control of CD audio, access to CD-ROM data disks, and will
automatically handle mixed mode discs containing both CD audio and data. By sending standard
Amiga I/O Requests to the cdtv.device, the application can read CD-ROM data, play CD Digital
Audio (CD-DA), track the position of the laser, synchronize audio with other events, read the CD
Table of Contents, set CD audio output attenuation level, read the status of the CD drive, read error
conditions, and enable/disable the front panel controls of the CDTV.

bookmark.device

The bookmark.device is a standard Amiga Exec device which provides access to and control of the
non-volatile RAM of the CDTV unit. Bookmarks provide a means of storing CDTV application
data and preserving it across machine resets and power button shutdowns. For now, bookmarks (and
cardmarks, see below) will be the only semi-permanent data storage method available to CDTV
developers until floppy drives and SCSI hard disks become widespread.

Bookmarks are designed primarily to hold small amounts of data that can be used to return the
user to a previously marked state within an application, hence the term bookmark. A bookmark
is internally identified by means of a Manufacturer ID (assigned by CATS or the Special Projects
Group) and a Product Code (assigned by the software developer). This enables applications to
easily distinguish their bookmarks from other bookmarks. The bookmark.device provides a means
of defining priorities of the various bookmarks, and for aging bookmarks so that unused bookmarks
will be the first to be replaced as the bookmark space fills and additional space is required.

Currently, CDTV machines are equipped with 2K of bookmark memory. This will most likely
change as CDTV evolves, but using the bookmark.device will shield developers from changes in
the amount, type, or location of this RAM. °

Programming and CDTV Multimedia 41

3.2.1 CDTV Specifics :CDTV Feature Overview

cardmark.device

The cardmark.device is virtually identical to the bookmark.device except that it provides access to
and control of credit card style memory cards instead of the non-volatile RAM. These cards, which
plug into the front of the CDTV unit, may also be used for ROM Operating System enhancements
such as new libraries or devices, ROM application programs, expansion ram for CDTV main
memory, recoverable ram disks, diagnostic software, and special hardware enhancements in addition

to being used for cardmarks.

playerprefs.library

The playerprefs.library is a standard Exec library that contains routines to assist an application in
CDTV specific user interface areas. The playerprefs.library gives access to the CDTV Preferences
stored in the non-volatile RAM, provides screen centering routines, bitmap manipulation routines,
and infrared (TR) controller input handling routines, as well as a screen blanker. Use of the routines
in this library will provide some consistency between applications, and will enable an application

to easily obey the user preferences choices.

ISO 9660 filesystem

The ISO 9660 Filesystem provides an Amiga application with transparent access to a CD-ROM. In
most respects, the application can treat the disc as an Amiga standard disk with a large amount of
storage. This makes developing CDTV applications much easier than if a different access method
had been used. (There are some important differences, however, that must be kept in mind to

achieve maximum performance).

CDXL

CD XL is a technique incorporated in the CDTV device driver that can significantly improve the
transfer speed of data from the CD disc into the CDTV player. It is not a compression method nor is
it a way of speeding up the drive. Instead, CDXL is a method of arranging the data on the CD-ROM
such that seek times are minimized. The CDXL routines allow an application to quickly locate the
data it needs and move it from the disc into memory in a minimum amount of time.

When using CDXL transfer routines, most of the processor time is still available for application use
because CDXL itself only uses about 8% of the capacity of the 68000 processor. Having most of
the resources of CDTV available allows applications to do interesting things while the data transfer
is taking place. Though the main use to date for CDXL has been for display of 1/3 screen images
running at about 12 frames per second with audio, the CDXL technique is not limited to this. It can
be used with any type of data—programs, audio, images, etc. When CDXL is in use, the CDTV
disc light remains lit showing the maximum data transfer rate has been achieved.

42 CDTV Developers Reference Manual

32.1 CDTV Specifics :CDTV Feature Overview

PORTS

Centronics Parallel Port
This is an industry standard Centronics parallel port to connect printers.

RS232 Serial Port
This is a standard RS232 port for connection of serial printers, modems, and other RS232
accessories.

RAM/ROM Card Slot

Expansion RAM credit cards, ROM cards, and special hardware expansion cards can be plugged
into this port on the front of the CDTV unit

Video Expansion Slot
Normally contains a card with the following connectors:

• Composite video (RCA connector).

• S-VHS (S connector).

• RF modulated (F type connector).

Other video cards are possible, such as the optional genlock card. This is a software controllable
genlock module that allows mixing CDTV video with external video input.

DMA Expansion Port

This port can have a SCSI card, a LAN card, or other cards which require a DMA interface to
the main CDTV memory.

Floppy Port (Amiga compatible)

A standard Amiga floppy or a CDTV black, matching floppy can be plugged into this port.
This will allow CDTV applications to read and write standard Amiga 880K floppy disks.

Audio Connectors
Two stereo output jacks (RCA connectors).

One stereo headphone jack.

MIDI Ports
There are two MIDI ports:

• MIDI In.

• MIDI Out.

Keyboard Port

An optional CDTV wired keyboard may be plugged into this port. The addition of both the
keyboard and the external floppy will allow the CDTV unit to be used as an Amiga computer
as well as a CDTV.

Mouse Port
An optional wired mouse may be plugged in into this port

Programming and CDTV Multimedia 43

3.2.2 CDTV Specifics'.Booting A CDTV Application I

Booting A CDTV Application

Starting Your Application

Applications on CDTV are generally “self-starting”. Unlike programs that run on the nonnal Amiga
where a program is normally invoked by the user from either Workbench or the Shell, on CDTV,
you are almost always going to be invoked directly from the startup-sequence on your CD-ROM
disc.

The normal purpose of a startup-sequence is to set up the environment of the computer. In the case
of a CDTV application, your application will also be invoked. On the Amiga, many users spend
much time tuning their own startup-sequence files; on CDTV, you, the developer, are the one who
will spend the time.

The CDTV startup-sequence must start your application as soon as possible. Users are not going
to be satisfied watching a blank screen. They want something to happen as soon as they turn the
power on. In this, we need to try to match the boot up speed of a typical game console. While we
can’t quite get there, we can get pretty close.

The goal for your startup-sequence is to start your application in the correct environment; your
constraints should be to bring up your application as quickly as possible, and to avoid fragmenting
memory while doing so.

There are several issues to starting quickly. One of the most important is that the perceived time
before something happens needs to be as short as possible.

This may involve showing a picture during the setup of your application or playing some music.
However, the time needed to load and start one of these subprocesses must be carefully weighed
against the result since displaying a picture will take additional time.

Some General Rules

• No disk thrashing.

• Minimize the number of programs invoked in your startup-sequence.

• Use the proper commands in your startup-sequence.

• Test your startup-sequence.

• Try to cut the perceived start time down as much as possible.

• Use QuickStart.

Programming and CDTV Multimedia 45

3.2.2 CDTV Specifics . Booting A CDTV Application

Specific Rules

Rule 1: Multitasking Is Not Always The Answer

Even though the Amiga is a multitasking computer, there are some places where it pays to do one
thing at a time. Loading files from disk is one of them. When you attempt to load two files at a
time, the filesystem ends up interleaving block requests, which produces a lot of seeks. (On CDTV,
seeks should be avoided at all costs; seeking is very expensive in time). The load time becomes
much longer than just the sum of the two load operations.

What not to do

Under 1.3, the Run command loads its target command asynchronously. This means if you put the

following in your startup-sequence:

run display picture
start_app

Run is loaded and started. Then Run begins to load the Display program. Meanwhile, the Start-app
program load begins. We get immediate disk thrashing, as we attempt to load both Display and
Start app at the same time. (Under 2.0 this problem does not exist as the Run command waits
until it has finished its load operation before allowing the script to continue. However, CDTV must

always consider the 1.3 environment.)

Basically, you should avoid the use of the Run command in starting your CDTV application from
the startup-sequence if you want to avoid disk thrashing—which you do.

Rule 2: A Short Startup-sequence Is Best

Keep your startup-sequence as short as possible. Just perform the minimum number of things
needed to get your application up and running. Combining functions into larger, multipurpose
programs can help a lot. For instance, if you use the playerprefs.library, you can probably eliminate

your use of Bookit to read the CDTV preferences.

Rule 3: The Right System-Configuration Makes All The Difference

The proper system-configuration file in devs: will make a difference. At the minimum, you will
want to specify both the default screen color palette and the default pointer color palette to be all

black. This will avoid any unsightly display on booting.

You should also make other reasonable default settings. Remember, only some of the Preferences
settings are controlled by the user in CDTV Player Preferences. For the rest, the user is depending
on you to chose a good set of defaults for the particular application ...since the user is booting from
your CD-ROM, you have control over the settings. Always test these actual settings with your

application to make sure they are appropriate.

Printers Drivers. If your application includes printing, the printer drivers are going to
have to be included in the CDO:devs/printers directory, as well as having the printer.device,

parallel.device, and serial.device present

Rule 4; Five Commands Can Improve The Environment

The standard CDTV utility commands you will be most interested in for setting up the environment
of your application via the Startup-Sequence are Bookit, CDSetMap, EndRUN, Keeper, and RMTM.

46 CDTV Developers Reference Manual

3.2.2 CDTV Specifics'.Booting A CDTV Application

Bookit

Bookit allows you to read the CDTV Preferences settings stored in the non-volatile RAM.
While the same functions can be performed directly from your program, Bookit provides a
convenient, externally controllable method of obeying the settings.

CDSetMap

CDSetMap will set the default system keymap to a selection based on the language selection
the user has made in CDTV Preferences.

Keeper

Keeper displays a picture while the rest of your application loads; when your application starts.
Keeper will remove the picture.

EndRUN

EndRUN launches a program in the background after closing the CLI from which the command
was run, as well as the Workbench This will free up additional memory for use by the application.

RMTM

RMTM removes the trademark screen. This is required if you wish users to actually see your
application.

The full documentation for these five utilities is at the end of this article.

Always end your startup-sequence with an Endcli. This should never get executed, but just in case
your application accidently exits, this will prevent the user from getting into a CLI where he could
be lost forever—especially without a keyboard)

Rule 5: Test Now, Avoid Problems Later

Test your startup-sequence. Unless you are one of the lucky ones who is using the CDTV emulator
card to develop, the first real test of your application setup will be when you press a gold disk. It’s
always a shame to have to redo a gold disk, especially when the only problem is that you don’t have
the proper assign in place.

When you start your application from the CD-ROM, the CD can be referred to as either SYS: or
CDO: You should always refer to it by one of those names. Getting tricky with assigns is usually not
worth it. During testing on CDTV when you are booting from a floppy, you can refer to anything
on the floppy as SYS: and any data as CDO:. During testing on your development machine from a
hard disk, you can do the same if you make a simple assign of CDO: to the partition on your hard
disk where you keep the data you will put on your CD-ROM. This will allow you to use the same
assign set for development, testing, and final product. This can cut down on a common source of
mistakes that could cause you to have to remake a gold disk.

Rule 6: Don’t Allow Users To Strum Their Fingers

Cut down on perceived startup time as much as possible. The amount of time the user thinks it takes
before your application starts is at least as important as the actual time it takes. Display of a title
screen, a picture, or simple animation, or playing some music can take the user’s mind off the wait,
and make it seem that your application is running, when in reality it still has another twenty-five
seconds of loading to do.

It s about three seconds from the time the system is reset to the time it begins reading your startup-
sequence. There’s not a lot you can do about this time—much of it is caused by having to wait for
the CD-ROM hardware to settle down.

Programming and CDTV Multimedia 47

322 CDTV Specifics .-Booting A CDTV Application

The Keeper utility can be used to load an IFF picture before your main application loads. It will
remain in the background. When your application is ready to begin, it can signal Keeper to remove

the picture.

Rule 7: Use QuickStart

While researching this article, it became apparent that some quicker method using the direct read
capability of the cdtv.device would really help speed up start times. QuickStart is the result
Basically, QuickStart is a combined direct read file loader/simple unarchiver that uses Burst read.

QuickStart comes in two parts: a packer and an unpacker. Using the packer, you can combine all the
programs invoked in your startup-sequence into one big file with a script to run them. Then you can
use the unpacker to load them out into RAM:, where you can execute them in any order, run them
in the background, or whatever. After your application has started, it can delete the commands in
RAM: to regain the memory space used during the QuickStart process, so except for the overhead
for the RAM-handler (10K under 1.3), there is only a small loss of total memory.

MEMORY FRAGMENTATION ISSUES DURING STARTUP

Pay attention to fragmentation during startup. Your goal is to have as big a contiguous RAM area
as possible for your application. The order in which you do things can be critical.

For instance, always create the RAM disk by CDing to it, rather than copying. Reason? The order
of memory allocation. If you invoke by Copy the order goes:

Copy allocates a buffer to hold your file. Then looks at the destination. Poof, the RAM-handler
is invoked, and it allocates its memory. Copy finishes, freeing its buffers, but since RAM: started
after Copy, you now have a free space, the RAM-handler, and free space.

To avoid this, CD to RAM: first. This will invoke the RAM-handler. Then the order is RAM
is invoked, allocating its memory. Then Copy does its allocation, and frees its allocation. Now
you still have basically the same RAM configuration you began with. (You will have a small
fragmentation, as the CD command needed to be loaded; under 2.0, where the CD command is built
into the shell, you will not have this fragmentation)

48 CDTV Developers Reference Manual

3.2.2 CDTV Specifics .'Booting A CDTV Application

Documentation On CDTV Startup-sequence Utilities

NAME

Boo kit—CDTV configuration/bookmaric reader utility

SYNOPSIS

Bookit [bjvcsl]

FUNCTION

This program configures CDTV options based on the contents of the CDTVPrefs bookmark,
stored in non-volatile RAM. This program ideally should be part of the Startup-sequence. The
options are:

b Sets Workbench screen and pointer colors to black. This is helpful in presenting a
blank screen after taking down the CDTV trademark, rather than the jarring blue
Workbench screen.

NOTE:
Workbench must be the only screen open for this to operate properly.

j Installs the Joy/Mouse rerouting task, which takes joystick events on gameport 1
and feeds them down the input.device food chain as mouse events. This makes
applications immune to the state of the IR remote’s JOY/MOUSE button.

For more details, see the autodoc playerprefs.library/InstalUoyMouse.

v Centers the Intuition View based on the user’s centering stored in the bookmark. It
is highly recommended that all CDTV titles make use of this option.

c Starts the system’s key click task with default settings. This will cause a small
"BEEP!" to be emitted each time the user presses a key or mouse button.

For more details, see the autodocs playerprefs.library/InstallKeyClick and player-
prefs.library/KeyClickCommand

s Starts the system’s screen saver task with default settings. The time delay is taken
from the CDTVPrefs bookmark.

For more details, see the autodocs playerprefs.library/InstallScreenSaver and player-
prefs.library/ScreenSaverCommand

1 Sets the LACE bit in GfxBase.system_bplconO. This will cause all Views to come
up interlaced. This is useful for recording more reliably to VCRs. This operation
is identical to the old PD program ’SetLace.’

NOTES

The options ’c,’ ’s,’ and T will have no effect if the user has not enabled the corresponding
item in CDTVPrefs. We strongly recommend all CDTV titles make use of the ’c,’ ’s,’ and T
options which will guarantee configuring the system to the users preferences.

EXAMPLE

Bookit cslv ; Recommended defaults
Bookit cslvj ; Defaults plus joy/mouse rerouter

Programming and CDTV Multimedia 49

3.2.2 CDTV Specifics'.Booting A CDTV Application

BUGS

SEE ALSO

playerprefs.libraiy/InstallJoyMouse
playerprefs.libraiy/RemoveJoyMousc
playerprefslibraiy/InstallKeyClick
playeiprcfs.library/KeyCIickCommand
playeiprcfs.library/InstallScrecnSaver
playerprefs.library/ScreenSaveiCommand

50 CDTV Developers Reference Manual

3.2.2 CDTV Specifics .Booting A CDTV Application

NAME

EndRun

SYNOPSIS

EndRun [command]—Execute the command given with workbench closed

FUNCTION

This CLI-only command can be used in the startup-sequence to execute the command given
after the workbench screen has been closed down. If running under 2.0 and the workbench
screen has not opened yet, it will just execute the command.

INPUTS

[command] is the command line to be executed. The first word in the command will be the
load file as passed to LoadSegO. If it does not exists, EndRun will just halt.

RESULTS

The command given is run with the workbench screen closed.

EXAMPLE

; startup-sequence for SnakePit
EndRun SnakePit datafile

; Note that we run the snakepit program with the
; argument "datafile" which is passed to the program.

NOTES

If run under 2.0, this may end up doing almost nothing except prevent the opening of the
Workbench screen.

The [command] will not have any functioning stdin/stdout. stdin/stdout will be connected to
NIL:

EndRUN *MUST* have VI.2 or greater kickstart. It also *MUST* be executed from a CLI.
(It does not check for workbench)

EndRun has a maximum COMMAND name (first word in the command line, including the
complete path) of 64 characters. It will not work correctly with more. The rest of the command
line can be as long as you wish.

When the program exits, Endrun will just halt. It will go into a dead loop. However, applications
run with EndRun are usually of the type the user uses with a reboot as this utility is design for
use in startup sequences.

BUGS

The command invoked by EndRUN must have the full path specified, or the endrun process
will not find the command, and hang.

Programming and CDTV Multimedia 51

3.2.2 CDTV Specifics . Booting A CDTV Application

NAME

Keeper— CDTV IFF display utility

SYNOPSIS

Keeper [filename] [QUIT]

FUNCTION

This program is used to display an IFF ILBM picture as a background task while the rest of
an application boots. Keeper can be used in the Startup-sequence of a CDTV application to
load a picture. This picture will be displayed until it is signaled either by the application or by
another invocation of keeper in the Startup-Sequence that it is time to remove the picture.

The QUIT option will cause Keeper to signal the background keeper task to shut down. This
may also be done directly from the application. The name of the Keeper task is "PicKeeper".
By signaling it with a SIGBREAKF_CTRL_C, the keeper task is notified of the shutdown.

Keeper can display any standard IFF picture including overscan except for pictures requiring
custom copper list changes. Keeper automatically compensates for PAL by centering its View
appropriately using the CDTV player preferences. If the CDTV preferences have not been set,
Keeper will use the information from the active View.

BUGS

The Keeper background task periodically checks the GfxBase->Acti View variable to see if its
View has been replaced. Because of this it is dangerous for a program to save the active View
during initialization and restore it later. CloseWorkBenchO and OpenWorkBenchO should

be used instead.

SEE ALSO

52 CDTV Developers Reference Manual

CDTV Specifics .'Booting A CDTV Application

NAME

RMTM

SYNOPSIS

RMTM

FUNCTION

This utility removes the CDTV trademark screen. It must be run before a CDTV application
starts; otherwise the CDTV application will remain covered by the CDTV trademark logo.

BUGS

SEE ALSO

Programming and CDTV Multimedia 53

3.2.2 CDTV Specifics .'Booting A CDTV Application

NAME

MakeQuick

SYNOPSIS

MakeQuick [FROM/M] [TO/K]

FUNCTION

MakeQuick creates an archive file containing all the files specified for use with the QuickStart
utility. The default archive name is ’quickfile’. To select a different archive name, the TO
keyword must be supplied. The archive can contain executables, scripts, data files, etc. No
compression on the archive is done.

BUGS

SEE ALSO

QuickStart

54 CDTV Developers Reference Manual

322 CDTV Specifics .Booting A CDTV Application

NAME

QuickStart

SYNOPSIS

QuickStart [FROM] [TO/K] [BURST/S]

FUNCTION

The QuickStart utility is used to read an archive created by the MakeQuick command, and
unpack it into the target directory. The default archive file name is 'quickfile'. The default TO
directory is the current directory. The BURST keyword will allow the QuickStart command
to load the archive using a DIRECT READ when loading from a CD disc on a Commodore
CDTV.

After unpacking the archive, if there is a script file named 'autostart’ it is executed.

NOTES

After the autoscript command is run, the application should delete any uneeded commands
(including itself) to regain RAM space.

Future changes to the CDTV system may remove the need for QuickStart. A method will provided
to detect this.

BUGS

If a subdirectory is not present, QuickStart will not create it.

Programming and CDTV Multimedia 55

3.2.3 CDTV Specifics Realization Programming

Localization Programming

The CDTV player is sold worldwide. Its Preferences contain fifteen languages. When preparing a
CDTV title for publication, you should consider making the title suitable for as many markets as
possible. This will require a certain amount of effort on your part, but the rewards can be enormous.

CDTV is a consumer product. It is sold through mass merchandisers, and is aimed at the most
general audience possible. While many computer users manage to survive using foreign-language
(read: English) versions of software, you cannot assume the average consumer will be as patient.

Many potential buyers will not even consider a title unless that title is in their language. Some
countries (such as France) have laws requiring products to include instructions in the local language.

See the article, “Localizing CDTV and CDTV Applications” in the User Interface section of this
reference manual for general information on how to localize your product.

Localization is the process by which software dynamically adapts to different locales. A locale is
made up of a set of attributes describing a language, and a set of cultural and linguistic conventions.
Without a standardized method to handle localization, the task of localizing applications is signif¬
icant, as either there must be several versions of the application, or the application must adapt on
the fly. Full localization goes far beyond the simple selection of the appropriate keyboard keymap
for use in a particular country. A fully localized application will appear as if it were written only
for the country for which its locale is set.

Under V2.1 of the Amiga operating system, there will be an Amiga shared library called the
locale.library which has functions for displaying, formatting, managing multiple translations of
text strings within an application, string sorting, currency symbol selection and formatting, etc.
Unfortunately, CDTV applications cannot use the features of V2.1 at this time because the current
version of the locale.library depends heavily on other features of the V2.1 operating system.

A CDTV application must consider V1.3, as the majority (close enough to 100% to make no
difference) of CDTV units in the field are VI.3. While there will be V2.0 CDTV machines (like
the A690 attached to a V2.0 equipped A500), the CDTV universe is really a VI.3 one, at least for
the time being. This means the CDTV application is on its own for localization services.

Techniques For Creating Multilingual Applications

Localizing a product requires careful planning. The following items, if designed into the project
from the beginning, may simplify things when you begin translating and adapting your product.

Programming and CDTV Multimedia 57

3.2.3 CDTV Specifics'.Localization Programming

Multilingual applications should read the language preference set by the user. This is done by using
the p layerprefs.library to read the CDTV Preferences stored in the non-volatile RAM. There are
fifteen languages currently supported. (This is subject to change, as the CDTV market spreads
elsewhere in the world). The currently supported languages are:

CDTV Preferences Language Choices
American English English German French
Spanish Italian Portuguese Danish
Dutch Norwegian Finnish Swedish
Japanese Chinese Korean

There’s More Than Meets The Eye. Although the CDTV Preferences only lists fifteen
language selections, eighteen languages are currently defined in cdtvprefs.h as supportable
languages. The three additional languages are Greek, Arabic and Hebrew.

As language selection is a part of CDTV Player Preferences, it is not usually necessary for your
title to include its own language selection screen unless you can support additional languages than
those listed above.

The getprefs.c program in the system directory of the CDTV Tools Disk Vl.l shows an example of
how to read the Preferences setting in your application.

If your application does not support the preferred language, you should propose a list of the languages
you do support, and let the user select an alternate language.

Methods Of Organizating Localized Text Strings

Due to the large amount of data storage available on the CD-ROM disc, it is actually practical to
store multiple versions of the application on the disc, and to load the appropriate version based on
the language selected. This presents the most straightforward programming model for the various
languages. If this method is adopted, it is strongly suggested that you keep a unified source tree,
and conditionally compile in the various sets of language strings. Again, the large amount of space
available on the CD-ROM disc makes this method quite practical. It also keeps RAM usage down,
as the language selection code does not have to remain resident in RAM, and the screen formatting
routines can be simpler.

While it may be necessary to design several versions of the same screen to accomodate the differing
lengths of text strings in different languages, it will not be necessary to design dynamic screen
layout engines, a much more complex task. Making the application completely font and text length
sensitive is certainly possible and should result in a good looking screen layout, but may be more
work than is necessary.

Another, more simple method to handle the screen layout problem is to design the screen layout so
that there is always enough room for the largest translated text string in each place a text string is
used. While this method does tend to spread control icons apart, it is not necessarily a drawback for
a CDTV application because the user will typically view the application from a distance of six to
eight feet on a standard television set. A spread out layout would make it clearer and easier to read.

58 CDTV Developers Reference Manual

3.2.3 CDTV Specifics'.Localization Programming

A good rule of thumb is to allow 50% more space than is required for an English text string for
translations into other languages. In general, the actual additional space required will be more on
the order of 30%, but stick with the 50% figure. You’re better off having a little extra space than
needing to redesign your layout after the translations come back and you have the one exception to
the 30% general figure.

If the application does end up with dynamic text strings and formatting routines rather than different
program versions for each language, the structure of the locale.library be used as a model. The
text string files should be stored in a subdirectory of the directory containing the application; the
subdirectory name should be based on the language it contains; and the file name should clearly
indicate which application it belongs to.

In either case, you should keep text separated from your code! If you are going to include on-screen
text in your application, make sure you keep those strings out of the body of your code. Searching
through thousands of lines of code to find error messages, prompts, etc., can be a long and painful
experience. A little advanced planning when analyzing your application can help enormously when
translating the text to other languages.

If possible, keep all text strings in a separate file. That file may then be sent to a translation
agency for localization. This step avoids the necessity of sending your entire source code to a third
party—an understandably painful process for most developers.

Doing entirely without text will naturally make an application much easier to localize. Liberal
use of easy to understand symbols will provide an international feel without a lot of translation.
However, symbols must be checked with native speakers of any language considered for localization.
Cultural differences may make an image that seems clear to a native of one country mean something
completely different or even insulting to a native of another country.

As previously mentioned, there is more to think about in localizing an application than just text
strings and symbols. The format for numeric output varies from country to country as does the
format used for monetary values and the format for dates. While not as important as text string
translation, correctly localizing these formats goes a long way toward getting your product accepted
in foreign markets.

Another localization issue is the keymap selection for the optional CDTV keyboard. Unfortunately,
an application can only make a reasonable guess as to what keymap the user requires based on the
language preference. In some cases, the obvious choice will be incorrect. In that case, it would be
nice to offer the user a method of selecting a different keymap in a heavily text based application.
The Commodore function CDSetMap will read the CDTV Preferences for the language setting and
make a keymap decision based on that selection. Its current language/keymap correspondence table
is:

Programming and CDTV Multimedia 59

3.2.3 CDTV Specifics Realization Programming

Language Keymap
American English USA
English GB
German D
French F
Spanish E
Italian I
Portuguese PORT
Danish DK
Dutch USA
Norwegian N
Finnish S
Swedish S
Japanese USA
Chinese USA
Korean USA
Arabic USA
Greek USA
Hebrew USA
OTHER USA

As you can see, any country that does not currently have a keyboard specific to that country receives
the USA keymap as a default.

Any keymaps other than the default ROM USA keymap are going to have to be present on your
application disc. Unlike the normal SetMap, the CDSetMap command uses keymaps in the current
directory, as well as in the DEVS:keymaps directory. If the CDSetMap command is used to set the
current keymap, you can leave all the keymaps in the root directory. The complete documentation
for the CDSetMap command appears at die end of this article.

Include Sampled Sound

One of the best ways to create interesting, localized multimedia titles is to use voice narration.
With over 600 Mbytes of space available on a CD, you have room for up to twenty-eight hours of
digitized audio (at a reasonable sampling rate). If you have one hour of a digitized voice in your
original code, you can easily sample the same sentences in other languages, and play those samples
back in your code. See the article "Producing High Quality Digitized Narrative Output" for hints
on how to digitize text in a foreign tongue.

While the Amiga narrator/translator is limited to American English, CDTV is not. It is possible
for an application to fully support speech in as many languages as the application has room for on
the disc (and in as many languages as reasonable translations and native speakers are available).
Multiple translations of audio tracks naturally adds to the time and cost required to produce a CDTV
application.

The narrator.device is an unusual feature of the Amiga, letting you synthesize the human voice
directly from an ASCII text file. However, the quality of the synthesized voice does not approach
the quality of sampled audio. Furthermore, the narrator.device and the translator.library do not

60 CDTV Developers Reference Manual

3.2.3 CDTV Specifics'.Localization Programming

support languages other than English. Attempting to have the narratondevice pronounce German
or Italian text can be a humorous, if not rewarding, experience.

Localization is one of the keys to creating an application that can be successful in today’s inter-
nadonal market. Time spent on localization can be rewarded tenfold through increased sales and
worldwide acceptance of the localized application.

Programming and CDTV Multimedia 61

3.2.3 CDTV Specifics Realization Programming

NAME

CDSetMap—Set the global default keymap based on the Preferences language setting.

SYNOPSIS

CDSetMap [keymap name] [DEFAULT/K]

FUNCTION

The CDSetMap command is used to set the global default keymap for the CDTV system based
on the language preferences stored in the non-volatile RAM previously set by the user.

Normally executed without any argument in the startup-sequence, the command will read the
CDTV Preferences, and make a keymap decision according to the current language setting. As
there is not a one-to-one correspondence between languages available and keyboards available,
a semi-reasonable mapping is used. This mapping is as follows:

Language Keymap
American English USA
English GB
German D
French F
Spanish E
Italian I
Portuguese PORT
Danish DK
Dutch USA
Norwegian N
Finnish S
Swedish s
Japanese USA
Chinese USA
Korean USA
Arabic USA
Greek USA
Hebrew USA
OTHER USA

This default mapping of unavailable keymaps to the USA keymap may be overridden by using
the DEFAULT keyword, and specifying a different keymap to use as the default.

The CDSetMap command may also be given a keymap argument. In that case, the keymap
indicated is set, no matter what the current Preferences setting is. The Preferences setting

stored in NVR itself is unaffected.

NOTES

The CDSetMap command looks for keymaps in the current directory first, then looks in the
devs:keymaps directory. If the indicated keymap is unavailable, the global keymap setting will

remain unchanged.

62 CDTV Developers Reference Manual

32.4 CDTV Specifics :CDTV File System

CDTV File System

The CDTV filesystem (henceforth referred to as CDFS) is an AmigaDOS compatible file handler

that interprets the ISO-9660 CD-ROM interchange format and presents it to the user and applications

as a standard AmigaDOS volume. CDFS also provides for booting from a CD-ROM, and provides
several boot-time configuration options.

ISO-9660 Overview

ISO-9660 is the standard established by the International Standards Organization (ISO) to provide

a “common ground” that CD-ROM vendors and users can use to maximize disc portability between

systems. ISO-9660 is based substantially upon the “High Sierra” format, established by CD-ROM
developers in the mid-1980s. ISO replaces the High Sierra format.

ISO-9660 establishes how files and directories are laid out on the CD-ROM sectors, the format of

directory structures, how files and directories may be named, the structures describing the entire

volume and where to look for them, and many other details. An ISO-9660 filesystem is contained

within a single CD “track.” ISO does not mandate that the disc contain only CD-ROM data. CD
digital audio may also be stored in separate CD tracks.

The entire ISO volume is described by a Primary Volume Descriptor (PVD) located near the

beginning of the track. The PVD contains the name of the disc, the name of the publisher, the name

of the manufacturer, the computer system and application for which the disc is intended, a copyright

notice, the disc s sequence number (for discs that are members of a multiple-volume set), the total

number of discs in the volume set, the size of the entire volume, a set of dates describing when the

volume was created, when the data on the disc becomes valid, and when the data becomes obsolete.
It also describes where the root directory structure may be found.

ISO also provides for optional Supplementary Volume Descriptors, Boot Records, and Partition

Descriptors. Supplementary Volume Descriptors can be used to define additional information about

a volume, specify a subset of the directory hierarchy declared in the PVD, or even a completely

different directory hierarchy. Boot Records usually contain bootstrapping code or data, and also

identify the system for which the boot code/data is intended. Partition Descriptors simply declare a

portion of the volume space whose contents are otherwise undefined. Partition Descriptors can be

used to reserve space in the ISO volume for raw data intended to be read directly off the CD.

ISO describes a hierarchical directory structure. Unlike AmigaDOS, directories are stored as “files”

on the disc; the entire contents of the directory can often be loaded in a single read. The directory

nesting is not permitted to exceed eight levels, and a full pathname must not exceed 255 characters.

ISO further mandates that the entries in the directory be sorted in ascending ASCII order.

Files under ISO are untyped, may contain anything, and may be up to four gigabytes in size.

Files under ISO can be recorded in sequential sectors, or may be recorded in an “interleaved”
fashion. Interleaved files are written such that M successive sectors contain file data, then N

sectors are skipped, then another M sectors of data, then N sectors skipped, etc. This permits

Programming and CDTV Multimedia 63

3.2.4 CDTV Specifics:CDTV File System

application writers to interleave files together such that, when the files are read simultaneously, a
single contiguous read of the CD-ROM results, which increases performance. Optionally, files may
also include an Extended Attribute Record (XAR), which establishes access permissions, and also
helps define the contents of the file.

ISO also establishes what are called “associated files.” These files are “shadows” of ordinary files.
They have the same name, but their contents are completely different.

ISO designates a set of ASCII characters which may be legally used for file and directory names,
and other fields in ISO structures. Two sets are defined. The set called “a-characters” consists of
the following:

Range Characters

0x20-0x22 !"
0x25-0x3F %&’0*+,-.A)123456789:;<=>?
0x41-0x5 A ABCDEFGHUKLMNOPQRSTUVWXYZ
0x5 F

The set known as “d-characters” is a subset of a-characters, and is limited to the following:

Range Characters

0x30-0x39 0123456789
0x41-0x5 A ABCDEFGHUKLMNOPQRSTUVWXYZ
0x5F

By the above, lowercase characters are excluded from the standard. In actual practice, however,
lowercase is used frequently in ISO structures, though its use is not standardized.

File and directory names are restricted to the set of d-characters. In addition, filenames are required
by the standard to have one and only one dot (’.’) in them, which separates the filename from
the filename extension. Filenames are also required to have a version number following them,
separated by a semicolon (’;’)• The sum of the lengths of the filename and extension may not
exceed 30 characters. Thus, examples of valid filenames as they would appear on an ISO volume
might include:

COMMAND.COM; 1
UTILmES.INFO;3992
IFFPARSE.LIBRARY;37
.LOGIN;2
AMIGALOGO.; 1
VERY_LONG_FILE_NAME_INDEED.BAK; 1

Because the seek times on CD-ROM drives are so slow, ISO-9660 establishes the presence of a Path
Table. This table contains the name and location of every directory on the volume, and is meant
to be loaded by the host when the disc is inserted. By searching the Path Table, the host is able to
arrive at any directory on the disc with a single seek.

As a final note, your CDTV applications do not need to know about ISO-9660 in order to operate,
since CDFS takes care of all the mish-mash for you. If they run off a write-protected floppy or
write-protected hard disk, they will run off a CD just fine.

64 CDTV Developers Reference Manual

32.4 CDTV Specifics:CDTV File System

What CDFS Does

CDFS resides in the extended ROM kernel within every CDTV unit. It represents an ISO-9660
filesystem as an AmigaDOS volume to users and applications. As far as programs are concerned
u 8 ^t a very big write- protected floppy disk. CDFS confonns to a Level 1 Implementation and
accepts disks mastered at Level 2 Interchange.

CDFS permits the use of lower-case, punctuation, and international characters in file and directory
names CDFS does not require a dot (’.’) to be present in file names, but forbids the use of the
semicolon (’;’). In short, any sequence of characters that represents a valid AmigaDOS file name
will be recognized by CDFS. (Note that, if you have a disc mastered using these relaxed rules, the
portability of your disc to other platforms is reduced.)

<pFS also lets you set various configuration options and cache sizes at boot time, and also permits
the developer to specify alternate boot methods.

What CDFS Doesn’t Do

Due to AmigaDOS compatibility, short development time, and testing restrictions, there are a few
ISO features not supported by CDFS 1.0.

The current version of CDFS does not contain support for interleaved files. Attempts to read
interleaved files currently yield garbage data

Associated files, if present, are reported in directory listings. The visible effect will be a duplicate
entry m the listing. However, attempts to access the relevant file name will yield only the associated
file; the non-associated file is inaccessible via a direct OpenO, but can be accessed with ExNextO.

Files with Extended Attribute Records (XARs) are not directly supported. The XAR will appear as
file data and the file length will appear shortened. To properly access a file with an XAR requires a
call to the device driver.

The version number embedded in the file name is unavailable to AmigaDOS; filenames are internally
truncated at the semicolon. Additionally, files sharing the same name but different version numbers
will appear as multiple entries with the same name in a directory listing. However, only the first
such file (the one with the highest version number) is direcly accessible via an OpenO. The others
must be accessed with ExNextO-

Supplementary Volume Descriptors and Partition Descriptors are currently ignored.

Enhancements for all the above are being investigated for a future version of CDFS.

Application Programming

o^!inre<*U*reS n° unu.sua* Programming. All the DOS calls work as expected (OpenO CloseO,
ReadO, InfoO, ExamineO, etc.), with the minor exception that all attempts to modify the disc
return an error, reporting the disc to be write-protected.

arJ?^riVen 1/0 through operates normally. CDFS also supports an extra packet,
ACTION_DDRECT_READ for better performance with large files. See the section on direct
reading for more information.

Programming and CDTV Multimedia 65

CDTV Specifics :CDTV File System

File And Directory Layout

The major time sink when reading a CD-ROM is seeking. Seeking can easily consume 80% of the
time required for data transfers. Obviously, your application will want to minimize seek times. One
good way to do this is to take advantage of CDFS’s read-ahead and directory caches and try to lay
the files and directories out on the disc such that they can be read with minimum seeking.

Although ISO mandates that the entries in a directory be sorted in ASCII order, you are free to place
the actual contents of a file anywhere on the disc. The same is true of the directories. Thus, you
will probably want to lay out the files on your disc in the order in which they’re accessed by your
application.

As an example, if your application were, say, Workbench, you would want to group all the .info
files together so that they could be scooped up by a single large read, enabling the icons to appear
on screen very quickly.

By the same token, if you have a directory or set of directories that you access frequently or in a
particular order, you may wish to group those directories together on the disc.

Direct Reading

CDTV has the ability to perform direct DMA from the disc into your application’s buffers. However,
the current version of CDTV’s DMA controller has a bug such that the last few bytes of a transfer
might not actually happen.

The workaround for this is to allocate buffers slightly larger than needed, and request slightly more
bytes than needed. Thus, the desired number of bytes is received; any missing bytes are part of
the padding and are ignored. CDFS does this internally by allocating slightly larger buffers than it
needs, DMA’ing into them, and then using the CPU to copy the desired number of bytes into the
client’s buffer.

However, if you write your application to allocate slightly larger buffers, you can enable CDFS s
direct reading feature, which will cause CDFS to DMA the data directly from the disc to your
buffers.

Once you have enabled direct reads, you need only perform the padded allocations. Unlike
CMD-READ with cdtv.device, you do not need to explicitly request the extra bytes; CDFS does
this for you. The amount by which to pad your allocations is READ_PAD_BYTES, and is defined
in <devices/cdtv.h>. An example of reading into a buffer after direct reads are enabled might appear
as follows:

UBYTE buffer[BUFSIZ + READ_PAD_BYTES) ;

Read (file, buffer, BUFSIZ);

There are a few other rules that apply to direct reads. In order for direct reads to work, the file must
be positioned on an even byte boundary, the address of the destination buffer must be word-aligned,
and the size of the transfer must be an even number of bytes. If all these conditions are met, your
buffer will be filled using direct reads. Otherwise, the default indirect method will be used.

There are two ways to enable direct reads. One is to enable direct reads globally by installing the
direct reading boot option in the volume’s PVD. This is discussed in more detail in Boot Options
below.

66 CDTV Developers Reference Manual

3.2.4 CDTV Specifics :CDTV File System

The other way is to send a packet to CDFS asking it to enable direct reads for a particular file. The
packet is ACTION_DIRECT_READ, and has the following semantics.

Type LONG ACTION_DIRECT_READ (1900)

Atgl CPTR Filehandle structure
Arg2 LONG Boolean
Resl LONG DOS-TRUE

Ai?l is a C-style pointer (not a BPTR) to a Filehandle structure obtained by opening a file on the
CD volume. If Arg2 is TRUE, then direct reads for the file are enabled; if FALSE, direct reads are
disabled.

Make Sure It'S CDFS. ACTION_DIRECT_READ is currently unique to CDFS Other
file handlers will generate an error result for this packet. It is wise not to invoke this packet
unless you are certain you are talking to CDFS.

Boot Time Options

When CDFS boots a CD-ROM, it inspects the PVD to see if any boot- time options have been
placed m the application use area of the PVD. These options and their descriptions are:

Read-Ahead Cache Size

CDFS allocates a read-ahead cache to improve performance. The size of this cache is specified
in CD sectors (2K bytes each). The default size is 8 blocks.

Directory Cache Size

CDFS allocates a cache in which it saves the contents of directories it has read. This boosts
performance if certain directories are read frequently. The size of this cache is specified in CD
sectors (2K each). The default size is 16 blocks.

Filelock Pool Size

To reduce memory fragmentation, CDFS pre-allocates a pool of Filelock structures which will
be consumed as applications procure locks on files. The size of the pool is specified as the
number of Filelock structures to pre-allocate. The default value is 40.

Filehandle Pool Size

As with Filelocks, CDFS pre-allocates a pool of Filehandle structures. The size of the pool is
specified as the number of Filehandles to pre-allocate. The default value is 16.

Direct Read

Enables direct reads for all file I/O. See the section on direct reading in this document for more
details.

Fast Directory Searches

ISO-9660 mandates that entries in a directory be sorted in ascending ASCII older. However,
since it only allows upper-case file names, it doesn’t say how to sort filenames that contain
lower-case. Do you sort case-sensitive or case-insensitive?

The Fast Directory Search option will stop searching a directory when it passes the point
where the filename could be. However, for it to work, the directory must have been sorted

Programming and CDTV Multimedia 67

3.2.4 CDTV Specifics:CDTV File System

case-insensitively. If your disc is so mastered, you may enable this option and enjoy improved
performance on directory searches.

Retry Count
This specifies the number of times to retry a read operation in the event of an error. The default

value is 32.

As mentioned earlier, these options are stored in the Application Use field of the PVD structure
(byte offset 885). Each option is specified by a header consisting of a 16-bit identifier followed
by a 16-bit length. The identifier uniquely identifies the option. The length specifies the number
of data bytes following the header. This length must be even. A length of zero is valid. If there
are additional options, they are written immediately after the last data byte. An identifier of zero
terminates the list of options. Options start at byte offset 1 in the Application Use field, which
achieves word alignment.

Boot options are created and installed by either the ISO image mastering software, or by SetCDFS,
a tool available from Commodore which installs and removes options from an existing ISO image

file.

68 CDTV Developers Reference Manual

5.2.5 CDTV Specifics :CDTV Device

CDTV Device

Introduction

This document describes the operation of cdtv.device, which is the core of operation for the CD-
ROM drive hardware. It is part of the extended ROM Kernel within each CDTV unit. Among other
things, cdtv.device is responsible for

• Reading CD-ROM data

• Playing CD-DA (Digital Audio)

• Tracking laser position (Subcode Q)

• Synchronizing audio with other events

• Fetching CD Table of Contents (TOC)

• Attenuating CD audio outputs

• Obtaining drive status

• Determining error conditions

• Disabling CDTV front panel controls

• Changing genlock modes

The CDTV device is the lowest level access point for the CD-ROM drive. Direct hardware access
is forbidden. Violators will be mercilessly punished.

All device commands are performed through I/O requests sent directly to the CDTV device. Nearly
all of these commands can be executed either synchronously or asynchronously depending on
application requirements. The device also supports a two channel command request queue to
permit the operation of simultaneous asynchronous commands. This allows, for instance, a laser
position query to occur during a play command.

Before You Start

CDTV is built around the Amiga computer. As such, you are required follow all the programming
standards and practices of the Amiga.

• Be sure you are familiar with the Amiga ROM Kernel Reference Manuals.

• Read this document completely.

• Read the Autodocs (programmer’s reference) which describe the device commands in precise
detail.

• Read the C and/or assembly include files, which also contain additional valuable information.

Programming and CDTV Multimedia 69

3.25 ■ CDTV Specifics :CDTV Device

• Use the Commodore-supplied debugging tools where possible.

• Avoid empirical programming (just because it works, doesn’t mean it’s right).

• Observe all programming standards.

In particular, you should not assume the current CDTV hardware will remain unchanged! For
example: the OS ROMs will soon be upgraded to v2.04; the CD-ROM drive will change; hardware
addresses will change; peihaps the processor will improve; memory may expand; etc. If you follow
the rules, such changes will not affect you. If you decide to break the rules, great misfortune is

certain to befall you.

If you are new to Amiga programming, carefully study of the example programs in the Amiga
ROM Kernel Reference Manuals. Also, the Fred Fish Collection (available on CD-ROM) contains
hundreds of programs with working example source.

With proper care your title will function not just on CDTV, but also on the A570, property-equipped
Amiga systems, and future CDTV systems, thus minimizing your number of SKUs and after-sale
support, and maximizing your unit sales and profits.

This document assumes that you are already familiar with the mechanics of Exec-level device I/O
and Amiga programming in general.

The Compact Disc

Compact Discs (CDs) are a read-only optical medium capable of storing several hundred megabytes
on a single disc. CDs have enjoyed tremendous popularity as a distribution medium for music.
CD-ROM is an extension of the medium, putting computer data on a disc instead of digital audio.

CDs are laid out as a continuous spiral track, from the inner to outer edges of the physical disc. A
CD can hold a maximum of roughly 74 minutes of music, or about 660 megabytes of data. (Some
CDs hold more, but many CD mastering houses prefer not to push these limits.) CD-ROMs may
freely intermix audio and data tracks, but most systems expect a ROM track to be the first track on

the disc.

Data on CDs and CD-ROMs are divided into "tracks" and "frames." A track is analogous to a music
track. CDs start numbering their tracks from 1; there is no track zero. A CD can have a maximum
of 99 tracks. An ISO-9660 filesystem (the standard format for CD-ROM data) is contained in a
single track, and is usually the first track on the disc. Tracks can also be further subdivided by
including index positions. However, the index feature of CDs is rarely used.

A “frame” is CD parlance for a sector. Sectors on a CD are 2,048 bytes in size. All CD players read
sectors (frames) off the disc at 75 frames per second. At 2K per sector, this makes the maximum
transfer rate 153,600 bytes per second.

The first 150 or so sectors (it varies) are devoted to the Table Of Contents (TOC). The TOC describes
how many tracks are on the disc, where each track begins, and what type of track it is (audio or
data). It also specifies the length of the entire disc.

Embedded within the CD datastream are eight one-bit subchannels, named P, Q, R, S, T, U, V, and
W. Subchannel P is a simple annunciator bit indicating the start of a music track; it is almost never

70 CDTV Developers Reference Manual

3.25
CDTV Specifics :CDTV Device

used today. Subchannels R through W arc used for CD+TJ anH m^umi a „ ^
are not available to the programmer. CD+MIDI data. These subchannels

ro Q' ?ier told’is available. Each frame, the bits of Subchannel O are assembled

-a* J“\M°re rarcl* SubQ Paotos can contain Universal Product Codes

^ely iden^ngso'nadi^ ‘"d I“emiUi0"al StandaId R“o«Ung Codes (ISRC), which

Finding Your Way Around A Disc

MSF^Zt*1 LSN ^ZTe° sysums “ sPeci<y locations on a disc: LSN format and
J>F format. LSN stands for Logical Sector Number. Logical Sector Numbers begin at 7/*m „nH

increment sequentially, one per frame, to the end of the disc. 21 d

s^sTd m,tlZ Minut--“F-es- This system specifies a number of minutes,
nSa ^ beg,nmnS of ^ d^c. This format is most frequently used when

jL^MSF^bere wTnVCr’ ** “ m°re cotnPlicated using MSF values rather than LSN
37f“n^ UmberS Wntten 0ut usuaUy aPPear 35 “05:09.37”, which means 5 minutes, 9 seconds.

JfSTJ t0 ^ dCT dodVer “ 3 P3Cked l0ngW0ld- ^ minutes value is placed
remain a seconds value in bits 8-15, and the frames value in bits 0-7. Bits 24-32 must

to use theTOMSFneXamP e’ MSf 05:09 37 would ** ^presented as 0x00050925. You may care
se the TOMSF0 macro in <devices/cdtv.h> to generate MSF values.

M^Lro reforn diSm1® T “ n0 "egativc *“«***• However, LSN zero and
b ™ refe*t0 dlfferent positions on the disc. LSN zero is equivalent to MSF 00 02 00 MSF

zero refers to the very beginning of the disc. However, this is where the IleoVoonren^oc^

^ touZv «“Sable fr^UK *“ “T 0f «* TV Son of
ii ^ tneving the TOC and inspecting the starting position of the first track Thi<5

u ually com? „u. ro be MSF 00:02.00, bur different manufaemrera may pur ul dSeSnS

8m tae.S " diK' N°‘e thal il is not a good idea to try ro position the laser before the

Device Access

smicnirpC(Vi'Sfi*US!i^C 0ther Exec-level device. Commands are sent using the IOStdRea

mantra SSt HSrTJ,>X lto 1/0 Sm,C‘Urc ““ d” b“ffOT resided »y,^
require a Message ^ poU“ “ m“S‘ * fmpCAy ^ 211 “"™ands wUl

Trms^tions with cdtv.device are initiated through OpenDeviceO. A typical opening of the device
might appear as follows (the function errO is not part of the system; it’s up to ^u):

struct MsgPort *reply;
struct IoStdReq *cdio;

/* Create reply port. */
if (!(reply = CreatePort (NULL, NULL)))

Programming and CDTV Multimedia 71

3.2.5 CDTV Specifics :CDTV Device

err ("Can't allocate reply port.");

/* Create I/O structure. */
if (!(cdio = CreateStdIO (reply)))

{ , %
DeletePort (reply); L
err ("Can't allocate CD I/O structure.");

}

/* Open device. */
if (OpenDevice ("cdtv.device", 0, cdio, 0))

DeleteStdIO (cdio); /* There are more elegant ways */
DeletePort (reply); /* to do this. '
err ("OpenDevice failed.");

)

The unit and flags parameters to OpenDeviceO must be set to zero for future compatibility. You
may open the device as many times as you wish. However, each call to OpenDeviceO must

eventually have a matching call to CloseDeviceO*

For The Experts. The io_Device and io_Unit fields may safely be cloned to create

multiple I/O requests.

Performing Commands

CDTV device commands are performed in exacdy the same fashion as other Exec devices. The
DoIOO function will perform synchronous commands; it will not return until the command has
completed The SendlOO function will perform asynchronous commands; it will initiate the
command and return control to your program. ChecklOO will check to see if an as^chronous
request has completed. WaitlOO will wait for a request to finish. Refer to the Amiga ROM Kernel
Reference Manual: Libraries and Devices for a full description.

Before performing a command, the request structure must be set up with the vanous parameters of
the command. The io_Command field must be filled in with the desired command code as found in
<deviceslcdtv.h>. The values of the io_Length, io_Offset and io_Data fields vary from command

to command. Unused fields must be set to zero for future compatibility.

BeginlOO—For Experts Only
The BeginlOO direct interface is functional in the CDTV device. However, there is very
little reason for using it. Nearly all commands are queued internally because they require
communication with the hardware that is always asynchronous and interrupt dnven.

It may be possible to shave a microsecond or two with this approach, but you must be certain
to handle the QUICKIO flag in the proper manner and you will need to DisableO under
some conditions. Further, these conditions will change in the future as the hardware improves.

DoIOO. et al, will always handle these cases correctly.

It is strongly advised not to use BeginlOO with cdtv.device in all cases. This argument also
applies to PerformlOO for those of you who are aware of such magic.

72 CDTV Developers Reference Manual

325 CDTV Specifics :CDTV Device

Command Overview

Below is a table of the available commands in cdtv.device. The table consists of the command
name, its numenc value, its type, and a brief description. Complete descriptions and parameters are
detailed in the cdtv.device Autodocs.

The first twenty-three commands are standard Amiga disk commands. The CD-relevant commands
begin at command 32. Command numbers not listed will return an error. Note that this is not a
SCSI device, so the SCSI direct command (28) is not valid.

The “Type” column defines the types of conditions that apply to the command. They are:

Q The command is Queued to be processed by the CDTV device
driver task. Such commands cannot be done from interrupts.

S Only a Single command of this type can be executing at the same
time. If more than one S type command is requested, each will
wait its turn before proceeding. Non-S commands can be executed
during an S command.

D The command requires a Disc be present.

Command Num I>pe Description

CDTV-RESET
CDTV_READ
CDTV_ WRITE
CDTVJUPDATE
CDTV_CLEAR
CDTV_STOP
CDTV_START
CDTV_FLUSH
CDTV_MOTOR
CDTV-SEEK
CDTV_FORMAT
CDTV_REMOVE

2
3
4
5
6
7
8
9

10
11
12
13
14
15

Reset the device
QSD Read bytes from CD-ROM

Error
Nop
Nop
Stop
Start
Nop
'Rim CD motor on/off

D Seek to a sector
Error
Error
Return disk change count
Return disk change status

CDTV_CHANGENUM
CDTV_CHANGESTATE
CDTV_PROTSTATUS D Always returns write protected

CDTV_GETDRIVETYPE
CDTV_GETNUMTRACKS
CDTV_ADDCHANGEINT
CDTV_REMCHANGEINT
CDTV_GETGEOMETRY
CDTV_EJECT

18
19
20
21
22
23

D Nothing for now
Error (currently)

D Nop

Add disk change interrupt
Remove disk change interrupt

Always a CD type

CDTV_DIRECT
CDTV_STATUS
CDTV_QUICKSTATUS

32 Q
33 Q
34

Direct CD commands
Direct CD status
Return status quickly

Programming and CDTV Multimedia 73

CDTV Specifics :CDTV Device

CDTV-INFO 35 Q D Return CD info

CDTV-ERRORINFO 36 Q Return error code

CDTVJ1SROM 37 Q D Determine if CD is ROM or DA

CDTV-OPTIONS 38 Q Set options
CDTV-FRONTPANEL 39 Q Turn front panel on/off

CDTV-FRAMECALL 40 Setup frame callback function

CDTV-FRAMECOUNT 41 Return frame counter

CDTV-READXL 42 QSD Perform transfer list read

CDTV-PLAYTRACK 43 QSD Play track/index

CDTV-PLAYLSN 44 QSD Play logical sector number (LSN)

CDTV-PLAYMSF 45 QSD Play minute:second.frame (MSF)

CDTVJPLAYSEGSLSN 46 QSD Play segment list LSN

CDTV-PLAYSEGSMSF 47 QSD Play segment list MSF

CDTV-TOCLSN 48 Q D Table of Contents LSN

CDTV-TOCMSF 49 Q D Table of Contents MSF

CDTV-SUBQLSN 50 Q D Subcode Q (position) LSN

CDTV-SUBQMSF 51 Q D Subcode Q (position) MSF

CDTV-PAUSE 52 Q D Pause during play

CDTV-STOPPLAY 53 Q Stop a play
CDTVJPOKESEGLSN 54 D Poke segment list LSN

CDTV-POKESEGMSF 55 D Poke segment list MSF

CDTV_MUTE 56 Get/Set DAC Attenuator

CDTV-FADE 57 Q Fade Attenuator up/down

CDTV-POKEPLAYLSN 58 D Poke an active play, LSN

CDTV-POKEPLAYMS 59 D Poke an active play, MSF

CDTV-GENLOCK 60 Set genlock mode

Data Commands

There are three commands to assist in reading data from CD-ROM:

CDTV-READ
Reads bytes from CD-ROM sectors. Because the CD-ROM is a word-onented device, all
transfers must be word-aligned and must be an even number of bytes. Unlike many other
Amiga disc device drivers, the transfer does not need to be sector aligned.

CDTV_READXL .
This command performs a "scatter read" of contiguous data from the CD-ROM into a list of

buffers. Its operation is detailed in a separate article.

CDTV-SEEK
Positions the laser as close as possible to the requested position. CDTV-READ and
CDTV-READXL automatically seek to a specified location. However, because of the high
seek times on CD-ROM drives, it may be valuable to pre-seek to a position, thus reducing the
settling time when it comes time to actually reading the data. By performing a seek at the
right time, you can cut up to half a second off the next CDTV_READ or CDTV_READXL

command.

74 CDTV Developers Reference Manual

325 CDTV Specifics :CDTV Device

The CD-ROM drive hardware prohibits all attempts to read CD digital audio data. This restriction is
required by Commodore’s license with the compact disc patent holder, and is ostensibly to prevent
the digital copying of copyrighted music.

Watch Out For This

There is currently a bug in the hardware which might cause the last few bytes of a read to not
be transferred.

The workaround is to request extra bytes, and to pad your memory buffers and disc data
accordingly. In this way, you will receive the desired amount of data; the missing bytes, if any,
are part of the padding, and are ignored.

The amount by which to pad your buffers and disc data is READ_PAD_BYTES, and is defined
in <devices/cdtv.h>. This bug will be fixed in the future.

Reading from the CD-ROM might take the following form:

UWORD buffer(BUFSIZ + READ_PAD_BYTES/2];

cdio->io_Command = CDTV_READ;
cdio->io_Offset = disc_location; /* In bytes. */
cdio->io_Length = sizeof (buffer); /* In bytes. */

cdio->io_Data = buffer;
DoIO (cdio);

Status Commands

Several facilities exist to interrogate the drive about its current status:

CDTV-CHANGENUM
Reports the number of times a disc has been inserted or removed from the drive.

CDTV-CHANGESTATE
Reports whether or not a disc is currently in the drive.

CDTV-ISROM
Reports whether or not the disc currently in the drive is a CD-ROM. This is useful for deter¬
mining whether or not you can perform data operations on the disc.

CDTV_FRAMECOUNT
Reports the number of CD frames that have transpired since the disc was inserted. This can be
used as a timebase for event synchronization.

CDTV.QUICKSTATUS
Quickly reports the current state of the drive, if available. Among other things, it tells you if
there’s a disc in the drive, if the disc is spinning, and if audio is playing.

CDTV_SUBQ{LSN,MSF}
Reports the current state of the drive, and position of the laser over the disc. This command is
most frequently used during CD audio operations.

For the commands CDTV-CHANGENUM, CDTV-CHANGESTATE, CDTVJFRAMECOUNT,
CDTV-QUICKSTATUS and CDTV-ISROM, the requested information is returned in the
io_Actual field of the I/O request. For example, the CDTV—ISROM command might be used
as follows:

Programming and CDTV Multimedia 75

3.2.5 CDTV Specifics :CDTV Device

BOOL CDROM_present;
LONG error;

cdio->io_Command = CDTV_ISROM;
cdio->io_Data = NULL;
cdio->io_Length =
cdio->io__Of fset = 0;
if (!(error = DoIO (cdio)))

CDROM_present = cdio->io_Actual != 0;

CDTV.QUICKSTATUS

CDTV.QUICKSTATUS is used to interrogate the drive’s current state. The report from
CDTV.QUICKSTATUS is a set of status bits. The bits and their meanings are as follows:

QSF—READY Drive is ready.
CD digital audio is being played.
Last hardware command finished.
Error in last hardware command.
The disc is spinning.
A disc is present in the drive.
Error related to positioning.

QSF—AUDIO
QSF—DONE
QSF_ERROR
QSF.SPIN
QSF.DISK
QSF_INFERR

Subject To Change It is not a good practice to depend on the values of QSF_READY,
QSFJDONE, QSF_ERROR or QSF_INFERR. Their meanings are not well defined and
will change in the future as the hardware improves.

CDTV.QUICKSTATUS returns the current state in the io-Actual field of the I/O request. The
command might be used as follows:

ULONG status_bits;
LONG error;
BOOL disc_present, disc_spinning, audio_playing;

cdio->io_Command = CDTV_QUICKSTATUS;
cdio->io_Data = NULL;
cdio->io_Length =
cdio->io_Offset = 0;
if (!(error = DoIO (cdio)))

{
status_bits = cdio->io_Actual;
disc_present = (status_bits & QSF_DISK) != 0;
disc_spinning = (status_bits & QSF_SPIN) != 0;
audio playing = (status bits & QSF AUDIO) != 0;
)

CDTV_SUBQ{LSN,MSF}

This command is used to request a SubQ packet from the drive. As discussed earlier, the SubQ
packet will tell you the current position of the laser on the disc. Additionally, it will also tell you the
current state of the drive. This command is principally used with CD audio applications. CDTV’s
built-in audio control panel makes extensive use of SubQ information to display the elapsed playing
time and other time modes.

The information is placed into a CDSubQ structure, which is defined in <devices/cdtv.h>, and is
shown below:

76 CDTV Developers Reference Manual

3.25 CDTV Specifics :CDTV Device

struct CDSubQ
{
UBYTE Status; /*
UBYTE AddrCtrl; /*
UBYTE Track; /*
UBYTE Index; /*
CDPOS DiskPosition; /*
CDPOS TrackPosition; /*
UBYTE ValidUPC; /*
UBYTE pad[3]; /*

>;

Audio status */
SubQ info */
Track number */
Index number */
Position from start of disk */
Position from start of track */
Flag for product identifer */

undefined */

The fields in the structure have the following meanings:

Status
This field contains the current status of the drive, and is vaguely similar to the report generated
by CDTV_QUICKSTATUS. The field is numeric, and can have the following values (any other
value is invalid):

SQSTAT_N OTVALID

SQSTAT_PLAYING
SQSTAT-PAUSED
SQSTAT-DONE
SQSTAT-ERROR
SQSTAT-NOSTAT

This SubQ report is not valid.
The drive is currently playing CD audio.
The drive is currently paused.
The most recent play command completed successfully.
The most recent play command generated an error.
No status available; this report is invalid.

This field must be sanity-checked. See the note below for more details.

AddrCtrl
This field describes the nature of the current track, as well as the type of SubQ report The field
is split into two four-bit fields. The lower four bits are status bits. Their meanings are:

ADRCTLFJPREEMPH This track has pre-emphasis of 50/15 pS.
ADRCTLF_COPY This track may be digitally copied. In our experience with hun¬

dreds of discs, we have never observed this bit to be set:-). (In no
case is digital audio data readable by the host.)

ADRCTLF_DATA This track contains CD-ROM data (as opposed to CD audio).
ADRCTLF_4CHAN This track contains 4-channel sound.

The upper four bits of the field are numeric. The possible values are:

ADRCTL_N OMODE

ADRCTL—POSITION
ADRCTL—MEDIACAT
ADRCTL-JSRC

No mode information was available; this report should be consid¬
ered invalid.
This report contains position information.
This report contains a UPC code.
This report contains an ISRC number.

This entire field must be sanity-checked. See the note below for details.

lYack
Contains the current track number.

Index
Contains the current index within the track.

DiskPosition
Contains the current position of the laser relative to the beginning of the disc.

Programming and CDTV Multimedia 77

325 CDTV Specifics :CDTV Device

TrackPosition

Contains the current position of the laser relative to the beginning of the current track.

ValidUPC
This field contains status bits. They are:

SQUPCB_VALID A UPC or ISRC code was detected.
SQUPCB_ISRC When set, ISRC detected; clear, UPC detected.

The address of the CDSubQ structure is placed in the io_Data field of the I/O request. The
io-Length and io_Offset fields should be set to zero for future compatibility.

You should perform sanity checks on the SubQ data to be sure that it is a valid report. In particular,
inspect the Status and AddrCtrl fields to be sure they indicate the report is valid. Also, watch for
nonsense combinations of the lower four AddrCtrl bits (e.g., a report where both ADRCTLF_DATA
and ADRCTLF—PREEMPH are set is clearly meaningless).

Here is an example of the command in use:

struct CDSubQ subq;
LONG error;

cdio->io_Command = CDTV_SUBQMSF; /* Request MSF format. */
cdio->io_Data = fisubq;
cdio->io_Length = 0;
cdio->io_Off set = 0;

if (!(error = DoIO (cdio)))
{
/*

* Test for valid position report. Discard all others.
* This test passes only those reports that say the drive is
* playing or paused, that the report is a position report,
* and that the current track is not a data track.
★

*

V
if

(Note that this is the most rudimentary of sanity checks.
A proper one would be more thorough.)

((subq.Status != SQSTAT_PLAYING &&
subq.Status != SQSTAT_PAUSED) ||

subq.AddrCtrl & ADRCTL_MASK != ADRCTRL_POSITION ||
subq.AddrCtrl & ADRCTLF DATA)

return (BAD_REPORT);
}

printf ("Status:\t\t0x%02x\nValidUPC:\t0x%02x\n",
subq.Status, subq.ValidUPC);

printf ("Track, Index:\t%d, %d\n",
subq.Track, subq.Index);

printf ("DiskPosition:\t%02d:%02d.%02d MSF\n”,
subq.DiskPosition.MSF.Minute,
subq.DiskPosition.MSF.Second,
subq.DiskPosition.MSF.Frame);

printf ("TrackPosition:\t%02d:%02d.%02d MSFNn",
subq.TrackPosition.MSF.Minute,
subq.TrackPosition.MSF.Second,
subq.TrackPosition.MSF.Frame);

}

Audio Commands

There are many commands available to the programmer related to playing CD audio. Briefly, they
are:

CDTV_PLAYTRACK
Play one or more complete music tracks.

78 CDTV Developers Reference Manual

3.2.5 CDTV Specifics:CDTV Device

CDTV_PLAY{LSN,MSF}
Play a segment of CD audio starting from a specific position, and ending at a specific position.

CDTV_PLAYSEGS{LSN,MSF}
Play a list of audio segments.

CDTV—POKEPLAY {LSN,MSF}
Alter a play in progress. Needed for "fast forward" type effects.

CDTV_POKESEG{LSNJMSF)
Jump to a particular audio segment node in an audio segment list.

CDTV_PAUSE
Pause or resume audio play.

CDTV-STOPPLAY
Stop a play operation that has been aborted.

CDTV_MUTE
Set CD audio volume level. Does not affect Amiga audio volume level.

CDTVJFADE

Fade CD audio volume level up or down over time. Does not affect Amiga audio volume level.

CDTV_T0C{LSNJV1SF}

Retrieve the Table Of Contents for the disc.

Most commands that play CD audio come in LSN and MSF flavors, giving you the choice of
specifying play positions and lengths using either LSN or MSF values. Commands using LSN and
MSF values may, in many cases, be intermixed.

All audio play commands may be aborted using AbortlOO- However, the drive light will re¬
main on, and the laser will continue to advance across the disc. This action is halted using the
CDTV_STOPPLAY command, covered below.

The drive will abort all attempts to play non-audio tracks with an error. However, you should
still take care to avoid accidentally playing CD-ROM data, since it is possible for a short burst of
non-audio data to be sent to the DACs and out to the speakers. CD-ROM data sounds unbelieveably
bad. If you thought playing arbitrary data in RAM using AudioMaster or the audio.device sounded
bad, wait until you hear it in 16-bit stereo.

CDTV_PLAYTRACK

This command provides the simplest form of CD audio control. It enables you to play whole tracks
of audio, either singly or several at a time.

The number of the track at which you wish to begin playing audio is placed in the io-Offset field of
the I/O request. The track at which you wish to stop is placed in io-Length. Optionally, you may
also specify indicies within the starting and stopping tracks; they are placed in the upper 16 bits of
the io_Offset and/or the io_Length fields.

Note that the stopping track does not specify the last track to be played, but the track at which
the drive will stop. In other words, the moment the drive encounters the track/index specified in

Programming and CDTV Multimedia 79

3.2.5 CDTV Specifics :CDTV Device

io_Length, it will stop playing. If io_Length contains zero, the drive will stop playing at the next
track.

The I/O request will return when the requested track(s) has completed playing. The command may
be aborted with AbortlOO.

CDTV_PLAY{LSN,MSF}

For finer control of CD audio, there are the commands CDTV—PLAYLSN and CDTVJPLAYMSF.
These commands let you specify an arbitrary absolute starting and stopping position on the disc.

The location from which to start playing audio is placed in the io-Offset field of the I/O re¬
quest This value is specified in either LSN or MSF format, depending on whether you’re using
CDTV_PLAYLSN or CDTV_PLAYMSF, respectively.

If you use CDTV_PLAYLSN, then the length of audio to play, in CD frames, is placed in io-Length.
When the specified number of frames has been played, the drive will stop playing.

If you use CDTV_PLAYMSF, then the stopping location, in MSF format, is placed in ioJLength.
When the drive encounters this position, it will stop playing. Naturally, the stopping location must
be greater than the starting location.

The I/O request will be returned when the requested audio segment has finished playing. Both
commands may be aborted using AbortlOO.

CDTV-PLAYSEGS {LSN,MSF}

These commands let you play several CD audio segments in sequence. This command saves you
from otherwise invoking CDTV_PLAY{LSN,MSF}in a loop.

The audio segments are described in a CDAudioSeg node structure, which is defined in
<deviceslcdtv.h>. The structure appears as follows:

struct CDAudioSeg
{
struct MinNode Node; /* double linkage */
CDPOS Start; /* starting position */
CDPOS Stop; /* stopping position */
void (*StartFunc)(); /* function to call on start */
void (*StopFunc) (); /* function to call on stop */
};

The fields have the following meanings:

Node
An Exec MinNode used to link the CDAudioSeg structures together in a list.

Start
Starting location.

Stop
Stopping location (MSF) or play length (LSN).

StartFunc
Pointer to a call-back function to be called when this segment starts playing.

StopFunc
Pointer to a call-back function to be called when this segment has finished playing.

80 CDTV Developers Reference Manual

3.2.5 CDTV Specifics:CDTV Device

The Start and Stop fields have the same semantics as the io_Offset and io_Length fields, respec¬
tively, for the CDTV_PLAY {LSN.MSF} commands: Start specifies the starting location in either
LSN or MSF format: Stop either specifies play length in CD frames (for CDTV JPLAYSEGSLSN),
or the stopping location (for CDTV_PLAYSEGSMSF).

StartFunc and StopFunc are optional pointers to functions which are called when the audio segment
described by the node has begun/ended. This can enable you to synchronize your program to the
audio sequence. See the section on call-backs for programming details.

To use the command, the address of the list header or the address of a CDAudioSeg node is placed
in the io_Data field of the I/O request. If you pass the address of the list header, the driver will start
playing audio segments from the beginning of the list If you pass the address of a CDAudioSeg
node, the driver will play segments starting with the passed node.

The command will be held until all nodes in the list are played. The command may be aborted
using AbortlOO-

CDTV_POKEPLAY{LSN,MSF}

This command is the audio equivalent of a “seek”; it causes the laser to move to a new location and
play CD audio from that point. This frees you from having to AbortlOO the current play command
and issue a new one. It is particularly useful for "fast-forward" type effects.

The semantics of the io-Offset field and the io_Length field are identical to those for
CDTV_PLAY{LSN,MSF}: io_Offset specifies the new starting location, in length speci¬
fies the new play length (for CDTV—POKEPLAYLSN) or the new stopping position (for
CDTV—POKEPLAYMSF). You cannot intermix location address types with this command, i.e.,
you cannot use an LSN poke on an MSF play in progress, and vice versa.

Note that this command should be thought of as a modifier for CDTV-PLAY{LSN.MSF}. Thus,
a CDTV—PLAY{LSN.MSFJcommand must be in effect when invoking this command (else you
crash, go boom).

This command takes effect and returns immediately.

CDTV_POKESEG{LSN,MSF}

This command forces a “jump" to a particular node in an audio segment list. This enables you to
skip around in a segment list, or to an entirely different list.

The address of the node to jump to is placed in the io_Data field of the I/O request. The new play
length/stopping position is taken from this node. However, the new play position is placed in the
io_Offset field. The drive will seek to the location specified and continue playing audio segments
from that point.

Note that the node specified does not need to be within the same list. Thus, you can use this
command to switch between segment lists.

This command takes effect and returns immediately.

Programming and CDTV Multimedia 81

3.25 CDTV Specifics :CDTV Device

CDTV.STOPPLAY

This command is used to stop the laser from tracking after a play operation has been aborted with
AbortlOO. This is done internally by forcing the laser to frame zero, so from a seek standpoint,
it is not always a good idea. If you are going to be playing other parts of the disc soon after the
AbortlOO, this command is not necessary.

This command takes no parameters, and takes effect immediately.

Tips On Playing CD Audio

Here are some helpful tidbits on the perils and pitfalls of programming CD audio.

Disc Length

Some people assume that the total length of the disc is the position of the lead-out as reported
by the TOC’s special disc summary entry. This is not the case. The total usable length of the
disc is the location of the lead-out minus the starting position of the first track.

Lead-In Segments
Many audio discs have a “lead-in” to each track. This is a zone of total silence before the music
actually begins and is technically considered part of the track. However, the TOC will report
the beginning of the track where the music actually begins:

Where the track really starts

Where the TOC says it starts

V >

Index 0 tadex 1 Music

Lead-in

(Silence)

\
-V-
Total length of track

/

When the laser is in the lead-in area, the SubQ will report it as being in index 0. Also, the
TrackPosition field in the SubQ report will (in most cases) count down to zero. When actually
playing music, it will report it as being in index 1 (or greater, if the disc in question uses indicies),
and the TVackPosition field will count up. (The DiskPosition field always counts up.) Note that
not all discs use lead-ins.

If you want to display the IVackPosition countdown, you may wish to add one second to the
report while the disc is in index zero, since the countdown is unsigned. Adding one second to all
IVackPosition reports within index zero will prevent you from displaying 00:00 for two seconds.

This is only a real problem if you’re planning on creating your own CD audio control panel. This
information is presented here so that it doesn’t surprise you later on (like it did certain authors).

82 CDTV Developers Reference Manual

3.25 CDTV Specifics :CDTV Device

CDTV_TOC{LSN,MSF}

This command returns the disc’s Table Of Contents (TOC), or any portion thereof. The TOC is
placed in an array of CDTOC structures. The structure is defined in <devices/cdtv.h>, and appears
below:

struct CDTOC
{
UBYTE rsvd; /* not used */
UBYTE AddrCtrl; /* SubQ info */
UBYTE Track; /* Track number */
UBYTE LastTrack; /* Only for entry zero
CDPOS Position; /* Position on disc.
};

The fields in the CDTOC structure can take on two different meanings, depending on how the
command is invoked. For ordinary tracks, the fields in the structure have the following meanings:

AddrCtrl
Identical to the AddrCtrl field in the CDSubQ structure. The high four bits may be safely
ignored.

Track

The track number this structure describes. This number ranges from 1-99.

LastTYack

Not applicable.

Position
Location of the beginning of the track, in either LSN or MSF format.

When requesting a TOC, you can also request a special extra entry that summarizes the disc. It
describes the total number of tracks on the disc, and the total length of the disc. This special entry
will be written to the first element in the CDTOC array. For this first entry only, the fields in the
CDTOC structure have the following meanings:

AddrCtrl
Not applicable.

Track

First track on this disc. This number is usually 1.

LastTVack

Last track on this disc.

Position

Location of the "lead-out," or end of the disc, in either LSN or MSF format.

The address of the base of the CDTOC array is placed in the io-Data field of the I/O request. The
number of TOC entries you wish to fetch is placed in io-Length; the CDTOC array must have at
least this number of elements. The number of the first track whose TOC entry you wish to fetch is
placed in io_Offset. For example, if you wanted to fetch TOC entries starting with track four, you
would place the value 4 in io_Offset. If you wish to fetch the special disc summary, you should
place the value zero in io_Offset.

After completion, if there was no error, the io_Actual field will contain the highest track number
written to the array (not the total number of entries fetched).

Programming and CDTV Multimedia 83

CDTV Specifics :CDTV Device J.2J

Using the CDTV_TOC{LSN.MSF}command might take the following form:

struct CDTOC tocarray[100];
LONG error;
short firsttrack, lasttrack, numtracks;
short i;

cdio->io_Command * CDTVJTOCLSN;
cdio->io_Offset = 0; /* Gimme summary */
cdio->io_Length = 100; /* Max 99 tracks + summary */
cdio->io_Data = tocarray;
if (error = DoIO (cdio))

err ("Failed to retrieve TOC.");

firsttrack = tocarray[0].Track;
lasttrack = tocarray[0].LastTrack;
numtracks = lasttrack - firsttrack + 1;
printf ("First track; %d Last track: %d Lead-out; %d\n",

firsttrack, lasttrack, tocarray[0].Position);

for (i = 1; i <= numtracks; i++)
printf ("Track: %2d AddrCtrl: 0x%02x Location: %d\n",

tocarray[i].Track,
tocarray[i].AddrCtrl,
tocarray[i].Position.LSN);

Miscellaneous Commands

A variety of other useful commands exist:

CDTV_INFO
Retrieves information about the drive.

CDTV_FRAMECALL
Call client code after every N CD frames.

CDTV-FRONTPANEL
Enable/disable front panel controls.

CDTV-GENLOCK
Set genlock mode.

CDTV_FRAMECALL

CDTV_PRAMECALL provides a method of receiving regularly paced events synchronized to the
CD frame rate. This is accomplished by the device driver calling a programmer-supplied function
every n CD frames.

A pointer to the function to be called is placed in the io_Data field of the I/O request. The number
of frames to wait between call-backs is placed in ioJLength. You invoke this command using
SendlOO- The driver will hold this command until it is explicitly removed via AbortlOO-

The driver will then call your code each time the number of frames specified in ioJLength have
passed. The details of the call-back are covered in the call-back environment section of this article.

84 CDTV Developers Reference Manual

3.2.5 CDTV Specifics :CDTV Device

CDTV_FRONTPANEL

CDTV’s front panel and infrared remote controls can manipulate the audio capabilities of the CD-
ROM drive directly, without host (Amiga) intervention. This capability is desirable to "power
users" who might wish to play a CD while interacting with a CLI or Workbench. However, certain
titles may wish to manipulate CD audio without interference from the user.

This command permits you to turn the front panel controls on and off. When the front panel is
“enabled”, the front panel controls operate the drive directly, and no rawkey codes for the PLAY,
STOP, FF, and REW keys are sent to the computer. When it is “disabled,” this direct connection is
broken, and the computer receives rawkey codes for those keys.

The desired state of the controls is placed in the io-Length field of the I/O request; a 0 disables the
controls, a 1 enables them.

The rawkey codes for the CD audio control keys are:

STOP 0x72
PLAY/PAUSE 0x73
FF 0x74
REW 0x75

Watch Out For This Bug. There is a bug in the current hardware which causes these
keys to be reported improperly.

For the STOP and PLAY/PAUSE keys, upon depression of the key, the rawkey code is sent
(downstroke) and is immediately followed by the same key code with IECODE_UP_PREFIX
set (upstroke). No code is sent upon key release. These keys do not auto-repeat.

For the FF and REW keys, upon depression of the key, nothing happens. If the key is released
immediately, the downstroke code is sent and immediately followed by the upstroke code. If
the key is held down, then a rapid repeating series of downstroke- upstroke pairs is sent. The
IEQUAL1F1ER_REPEAT bit is not set. The downstroke-upstroke pairs are sent approximately
six times a second, and ceases when the key is released.

This bug will be corrected in the future, making the behavior of these keys consistent with the
rest of the system. For the FF and REW keys, this corrected behavior may be brought out on a
different set of rawkey code numbers.

CDTV.GENLOCK

One of the standard peripherals available for CDTV is a genlock card, which plugs into the back
of the machine, replacing the existing multi-format video generator card. The genlock takes an
existing video signal and overlays CDTV video on top.

The desired genlock mode is placed in the io_Offset field of the I/O request. The available modes
are:

CDTV_GENLOCK_AMIGA
Display CDTV-generated video only.

Programming and CDTV Multimedia 85

3.2.5 CDTV Specifics :CDTV Device

CDTV_GENLOCK_EXTERNAL
Display external video source only.

CDTV_GENLOCK_MIXED
Display CDTV video overiayed on external video.

CDTV_GENLOCK_REMOTE
Allow the infrared remote control to cycle through the above three modes (by using the
GENLOCK button).

It is recommended that you return the genlock to CDTV_GENLOCK_REMOTE when your title is
finished with it, so the user may regain control of the genlock display mode.

As of this writing, there is no way to detect if a genlock card is installed in CDTV. However, you
can detect if the system has come up in genlock mode, which suggests strongly that a genlock is
present. This is done by inspecting the DisplayFlags field in GfxBase and seeing if the GENLOC
bit is set.

Call-Back Environment

Some cdtv.device commands have facilities to call client code. All call-backs occur in the same
environment.

Client routines are invoked as a subroutine by the driver, and must return via an RTS instruction.
Your code will be running in interrupt mode on the supervisor stack—under no circumstances
should you take advantage of this. The driver cannot proceed until your code returns, so you must
keep it very short; set a variable, send a signal, or cause a software interrupt. Hanging around too
long will kill the driver.

CPU registers D0,D1,A0,A1 are scratch. All other registers must be preserved. Each command
initializes certain registers in different ways. The initial register contents for each command are as
follows:

Command Registers
CDTV_FRAMECALL A2: Pointerto I/O request used to invoke the command.
CDTV_PLAYSEGS{LSN,MSF} A2: Pointer to CDAudioSeg structure just started or

completed.
CDTV_READXL A2: Pointer to CD XL node just completed.

The contents of all other registers are undefined.

Currently, no return codes are recognized by the driver. However, you should set DO to zero upon
exit from your call-back for future compatibility.

See the relevant Autodoc page for more details on the call-back environment for a given command.

86 CDTV Developers Reference Manual

325 CDTV Specifics :CDTV Device

C
Example Code Fragments

The following code fragments are further examples of how to call the various cdtv.device commands.

/*
Directory

Assumptions

CDTV
CDTV'
CDTV'
CDTV'
CDTV'
CDTV'
CDTV"
CDTV"
CDTV"
CDTV"
CDTV"
CDTV"
CDTV"
CDTV-
CDTV"
CDTV"
CDTV"
CDTV-
CDTV~
CDTV"
CDTV"
CDTV"
CDTV"
CDTV"
CDTV"
CDTV"
CDTV"
CDTV"
CDTV"
CDTV"
CDTV"
CDTV"
CDTV"
*/

RESET
‘READ
‘MOTOR
"SEEK
"CHANGENUM
"CHANGESTATE
ADDCHANGEINT

"REMCHANGEINT
QUICKSTATUS

"INFO
"ISROM
"FRONTPANEL
"FRAMECALL
"framecount
'readxl
"PLAYTRACK
PLAYLSN
PLAYMSF
PLAYSEGSLSN
PLAYSEGSMSF
TOCLSN
TOCMSF
SUBQLSN
SUBQMSF
PAUSE
STOPPLAY
POKESEGLSN
POKESEGMSF
'MUTE
'FADE
POKEPLAYLSN
POKEPLAYMSF
GENLOCK

/★★★★★★★★★★★★★★★★★★★★★★★it*

Assumptions

{

struct MsgPort *IOPort;
struct IOStdReq *IOReq;
BYTE Err;

// Init: Create request
IOPort = CreatePort (0, 0);
if (! IOPort)

Error{ NO_PORT);

IOReq = CreateStdIO(IOPort);
if { ! IOReq)

Error(NO_REQUEST);

if (OpenDevice(CDTV_NAME, 0, IOReq, 0))

IOReq->io_Device = NULL;
Error(OPEN DEV);
}

// Example code here...

// Quit: Remove request (Error () must call this)
if (IOReq)

Programming and CDTV Multimedia 87

3.25 CDTV Specifics :CDTV Device

<

if (IOReq->io_Device)
CloseDevice((struct IORequest *) IOReq);

DeleteStdIO(IOReq);
}

if (IOPort)
DeletePort(IOPort);

}

/*★★****★*★★★*•★★*★★★★★**★*

CDTV_RESET
★★*★★★*★★**★**★★★****★*★★/

{
IOReq->io_Command = CDTV_RESET;
IOReq->io_Of f set * 0;
I OReq- > i o_Le ngt h = 0;
IOReq->io_Data = NULL;
if (Err = DoIO((struct IORequest *) IOReq))

printf("IO Error %ld\n", Err);
}

/**★★**★★**★★★★★*★*★**★★**

CDTV_READ
★★*★**★*★★★★★*★★★★★**/

{
static UBYTE Buffer[2048 + READ__PAD_BYTES];
ULONG Sector;
ULONG Position;
ULONG Length;

// - Remember to add READ_PAD_BYTES to read's (and allow
// for the extra room in the Buffer).
Sector = 112;
Position = (Sector * 2048);
Length = 2048;

IOReq->io_Command = CDTV_READ;
IOReq->io_Of f set = Position;
IOReq->io_Length • (Length + READ_PAD_BYTES);
IOReq->io_Data = Buffer;
if (Err = DoIO((struct IORequest *) IOReq))

printf("IO Error %ld\n", Err);
}

/★★★★*★*★*★★**★***★★★★*★*★
CDTV_MOTOR

{
ULONG PreviousState;

IOReq->io_Command = CDTV_MOTOR;
IOReq->io_Of f set = 0;
IOReq->io_Length = FALSE; // Turn motor off
IOReq->io_Data = NULL;
if (Err = DoIO((struct IORequest *) IOReq))

printf("IO Error %ld\n". Err);

PreviousState = IOReq->io_Actual;
}

CDTV_SEEK
★*★**★**★**★**★★★**★***★*/

{
ULONG Position = (16 * 2048);

88 CDTV Developers Reference Manual

32.5 CDTV Specifics :CDTV Device

IOReq->io_Command = CDTV_SEEK;
IOReq->io_Of f set = Position;
IOReq->io_Length = 0;
IOReq->io_Data = NULL;
if (Err = DoIO((struct IORequest *) IOReq))

printf("IO Error %ld\n". Err);
}

/★**★****★*★★★*★★★***★★*★★
CDTV_CHANGENUM
★****★************★******/

{
IOReq->io_Command = CDTV_CHANGENUM;
IOReq->io_Of f set = 0;
IOReq->io_Length = 0;
IOReq->io_Data = NULL;
if (Err = DoIO((struct IORequest *) IOReq))

printf("IO Error %ld\n". Err);

printf("%ld disk changes\n", IOReq->io Actual);
}

/★★★★★★★★★★★a*************

CDTV_CHANGESTATE
★*★****★★★★★★**★★**★*★★**f

{
IOReq->io_Command = CDTV_CHANGESTATE;
IOReq->io_Of f set = 0;
IOReq->io_Length = 0;
IOReq->io_Data = NULL;
if (Err = DoIO((struct IORequest *) IOReq))

printf("IO Error %ld\n". Err);

if (IOReq->io_Actual)
printf("CD is not in drive\n");

else
printf("CD is in drive\n");

}

/*************★***********
CDTV_ADDCHANGEINT

struct Interrupt Changelnt;

void _interrupt _saveds InterruptCode(
void
)
{
// Do something
}

{
Changelnt.is_Node.ln_Type = NT_INTERRUPT;
Changelnt.is_Code = InterruptCode;

IOReq->io_Command = CDTV_ADDCHANGEINT;
IOReq->io_Of f set = 0;
IOReq->io_Length = 0;
I OReq- > i o_Da t a = (APTR) SChangelnt;
SendIO((struct IORequest *) IOReq);

// Refer to CDTV REMCHANGEINT for removal
}

/***★*★★★★*★*★******★★****

CDTV_REMCHANGEINT
★★★★★★★★★**★*★★★★★★*★★★★★f

struct Interrupt Changelnt;

Programming and CDTV Multimedia 89

325 CDTV Specifics :CDTV Device

void _interrupt _saveds InterruptCode(
void
)
{
// Do something
)

{
// Refer to CDTV_ADDCHANGEINT for adding
// Changelnt

// (do not need WaitlOO).
IOReq->io_Command = CDTV_REMCHANGEINT;
IOReq->io_Of fset = 0;
IOReq->io_Length = 0;
IOReq->io_Data = (APTR) SChangelnt;
DoIO((struct IORequest *) IOReq);
}

/**★***★***★★★*★★***★★**★*

CDTV_QUICKSTATUS

{
IOReq->io_Command = CDTV_QUICKSTATUS;
IOReq->io_Of fset = 0;
IOReq->io_Length = 0;
IOReq->io_Data = NULL;
if (Err = DoIO((struct IORequest *) IOReq))

printf("10 Error %ld\n", Err);

// Valid flags:
if (IOReq->io_Actual & QSF__AUDIO)

printf("Audio playing\n");

if (IOReq->io_Actual & QSF SPIN)
printf("CD is spinnlng\n");

if (IOReq->io Actual & QSF DISK)
printfrnCD in drive"\n");

}

/*★***★*★★★*★*★**★★****★★*
CDTV_INFO

{
IOReq->io_Command = CDTV_INFO;
IOReq->io_Of f set = CDTV_INFO_FRAME_RATE;
IOReq->io_Length =0;
IOReq->io_Data = NULL;
if (Err = DoIO((struct IORequest *) IOReq))

printf("IO Error %ld\n", Err);

printf("Frame rate: %ld frames/second\n", IOReq->Actual);

/A************************
CDTV_ISROM

{
IOReq->io_Command = CDTV_ISROM;
IOReq->io_Of f set = 0;
IOReq->io_Length = 0;
IOReq->io_Data = NULL;
if (Err = DoIO((struct IORequest *) IOReq))

printf("IO Error %ld\n". Err);

if (IOReq->io_Actual)
printf ("CD is a CD-ROM\n");

else
printf("CD is an audio CD\n");

}

90 CDTV Developers Reference Manual

CDTV Specifics :CDTV Device 325

/***************★******★**
CDTV FRONTPANEL ***★7* *******************/

{
IOReq->io_Command - CDTV_FRONTPANEL;
IOReq->io_Of fset » 0;
IOReq->io_Length « FALSE; // to disable front panel
IOReq->io_Data =* NULL;
if (Err = DoIO((struct IORequest *) IOReq))

printf("10 Error %ld\n", Err);
}

/*************************
CDTV FRAMECALL
*************************/

void _interrupt _saveds _asm InterruptCode(
register a2 struct IOStdReq ^Request
)
{
// Do something
return(0);
)

{
ULONG Frames = (2 * 75); // every 2 seconds

IOReq->io_Command = CDTV_FRAMECALL;
IOReq->io_Of f set ■ 0;
IOReq->io_Length = Frames;
IOReq->io_Data = (APTR) InterruptCode;
SendIO((struct IORequest *) IOReq);

/*
*

* Body of code goes here
*

*/

// Cleanup:
// Proper way to terminate
AbortIO((struct IORequest *) IOReq);
WaitI0((struct IORequest *) IOReq);
}

/*************************
CDTV_FRAMECOUNT
*************************/

{
IOReq->io—Command = CDTV_FRAMECOUNT;
IOReq->io_Of fset = 0;
IOReq->io_Length = 0;
IOReq->io_Data = NULL;
if (Err = DoIO((struct IORequest *) IOReq))

printf("IO Error %ld\n". Err);

printf("%ld frames since start\n", IOReq->io__Actual);
}

/**★***★****★***★***★★★*★★
CDTV READXL ****T********************f

void _interrupt _saveds _asm InterruptCode(
register _a2 struct CDXL *NodeCompleted
)
{
// Do something
return(0);
}

Programming and CDTV Multimedia 91

325 CDTV Specifics :CDTV Device

<

static UBYTE Buffer[4][2048];
struct MinList CDXLList;
struct CDXL CDXLNode[4];
ULONG Sector - 16;
ULONG NumSectors * 4;
ULONG i;

// Prepare list
NewList((struct List *) fiCDXLList);

for (i « 0; i < 4; i++)
{
AddTail((struct List *) 4CDXLList, (struct Node *) fiCDXLNode[i])
CDXLNode[i].Buffer = Buffer[i];
CDXLNode(i].Length = 2048;
CDXLNode[i].DoneFunc « InterruptCode;
}

// Start CDXL
IOReq->io_Command = CDTV_READXL;
IOReq->io_Offset = Sector;
IOReq->io_Length = NumSectors;
IOReq->io_Data = (APTR) CDXLList.mlh_Head;
SendIO((struct IORequest *) IOReq);

/*
*

* Body of code goes here
*

*/

// Cleanup:
// Proper way to terminate
AbortIO((struct IORequest *) IOReq);
WaitIO((struct IORequest *) IOReq);

// Then a SEEK is required to force the drive to stop (sometimes necessary)
IOReq->io_Command « CDTV_SEEK;
IOReq->io_Offset « 0; // or next position
IOReq->io__Length = 0;
IOReq->io_Data = NULL;

if (Err * DoIO((struct IORequest *) IOReq))
printf("IO Error %ld\n". Err);

}

/ft************************
CDTV PLAYTRACK
★*★★¥★****★★****★*★*★★★*★j

{

ULONG StartTrack =4;
ULONG StopTrack * 6;

IOReq- > i o_C ommand - CDTV_PLAYTRACK;
IOReq->io_Of fset ■ StartTrack;
IOReq->io__Length » StopTrack;
IOReq->io_Data « NULL;
if (Err » DoIO((struct IORequest *) IOReq))

printf("IO Error %ld\n". Err);
)

/*******************★***★*
CDTV_PLAYLSN *************************/

{
CDPOS StartSector;
CDPOS SectorsLength;

StartSector.LSN = 16;
SectorsLength.LSN = 300;

92 CDTV Developers Reference Manual

325 CDTV Specifics :CDTV Device

IOReq->io_Command = CDTV_PLAYLSN;
IOReq->io_Offset = StartSector;
IOReq->io_Length = SectorsLength;
IOReq->io_Data * NULL;
if (Err ® DoIO((struct IORequest *) IOReq))

printf("10 Error %ld\n". Err);
}

/*★********************★**
CDTV PLAYMSF ★★**★***★★***★***★★******/

{
CDPOS StartMSF;
CDPOS StopMSF;

StartMSF.Raw - TOMSF(5, 0, 0);
StopMSF.Raw = TOMSF(5, 10, 25);

I OReq- > i o_C omma nd = CDTV_PLAYMSF;
IOReq->io_Of f set * (ULONG) StartMSF;
IOReq->io_Length = (ULONG) StopMSF;
IOReq->io_Data = NULL;
if (Err « DoIO((struct IORequest *) IOReq))

printf("10 Error %ld\n". Err);
}

/★★★★★★ft******************
CDTV_PLAYSEGSLSN
★***★★★****★****★*****★★*/

void _interrupt _saveds _asm InterruptCode(
register a2 struct CDAudioSeg *CompletedSeg
)
(
// Do something
return(0);
}

{
struct MinList SegList;
struct CDAudioSeg SegNode;

// Prepare list
NewList((struct List *) £SegList);

AddTail((struct List *) fiSegList, (struct Node *) £SegNode);
SegNode.Start.LSN = 16;
SegNode.Stop.LSN « 300;
SegNode.StartFunc ** InterruptCode;

I OReq- > i o_Command = CDTV_PLAYSEGSLSN;
IOReq->io_Offset = 0;
IOReq->io_Length « 0;
IOReq->io_Data = (APTR) SegList .mlh_Head;
SendIO((struct IORequest *) IOReq);

/*
*

* Body of code goes here
★
*/

// Cleanup:
WaitIO((struct IORequest *) IOReq);
}

/*************************
CDTV_PLAYSEGSMSF
★a***********************/

void _interrupt _saveds _asm InterruptCode(
register a2 struct CDAudioSeg *CompletedSeg

Programming and CDTV Multimedia 93

325 CDTV Specifics :CDTV Device

{
// Do something
return(0);
}

{
struct MinList SegList;
struct CDAudioSeg SegNode;

// Prepare list
NewList((struct List *) £SegList);

AddTail((struct List *) £SegList, (struct Node *) £SegNode);
SegNode.Start.Raw « TOMSF(5, 0, 0);
SegNode.Stop.Raw « TOMSF(5, 10, 25);
SegNode.StartFunc « InterruptCode;

IOReq->io_Command * CDTV_PLAYSEGSMSF;
IOReq- >i o__Offset » 0;
IOReq->io_Length = 0;
IOReq->io_Data * (APTR) SegList.mlh_Head;
SendIO((struct IORequest *) IOReq);

/*
*

* Body of code goes here
*

V

// Cleanup:
WaitIO((struct IORequest *) IOReq);

/**★***★★*★********★*★*★*★
CDTV_TOCLSN *★★★********★****★★★*★**★j

{
static struct CDTOC TOCArray[100 J;
LONG i;

IOReq->io_Command = CDTV_TOCLSN;
IOReq->io__Offset = 0; // 0=Summary, or #
IOReq->io_Length = 100;
IOReq->io_Data - (APTR) TOCArray;
if (Err = DoIO((struct IORequest *) IOReq))

printf("IO Error %ld\n". Err);

// Disk summary
printf("Tracks %d to %d\n",

TOCArray[0].Track,
TOCArray(0].LastTrack);

// TOC
for (i = 1; i <= CDTVIOReq->io_Actual; i++)

printf("Track %d starts at sector %d\n", i,
TOCArray[1].Position.LSN);

)

/★★★★★*★★****★************
CDTV TOCMSF

{
static struct CDTOC TOCArray[100];
LONG i;

IOReq- >io_Command = CDTV_TOCMSF;
IOReq->io_Offset = 0; // 0=Summary, or #
IOReq->io__Length = 100;
IOReq->io_Data = (APTR) TOCArray;
if (Err * DoIO((struct IORequest *) IOReq))

printf("IO Error %ld\n". Err);

94 CDTV Developers Reference Manual

325 CDTV Specifics :CDTV Device

// Disk summary
printf("Tracks %d to %d\n",

TOCArray[0].Track,
TOCArray[0].LastTrack);

// TOC
for (i ** 1; i <* CDTVIOReq->io_Actual; i++)

printf("Track %d starts at Minute:Second:Frame %d:%d:%d\n",

i,
TOCArray[1].Position.MSF.Minute,
TOCArrayi 1].Position.MSF.Second,
TOCArray[1 j.Position.MSF.Frame);

}

/★**★**★******★*★★★***★***

CDTV SUBQLSN
★★★★Y*****★★★★★★★★★★★★★★★/

{
struct CDSubQ ReqSubQ;
UBYTE Addrlnfo;

IOReq->io_Command * CDTV_SUBQLSN;
IOReq->io_Offset - 0;
IOReq->io_Length = 0;
IOReq->io_Data = (APTR) ReqSubQ;
if (Err = DoIO((struct IORequest *) IOReq))

printf("10 Error %ld\n". Err);

// First check that it is valid
Addrlnfo = (ReqSubQ.AddrCtrl & ADRCTL_MASK);
if (Addrlnfo — ADRCTL_NOMODE)

return; // INVALID SUBQ

switch (ReqSubQ.Status)
{
case (SQSTATJiOTVALID):
case (SQSTAT NOSTAT):

return; // INVALID SUBQ

case (SQSTAT PLAYING):
printf("CD Playing\n");
break;

case (SQSTAT PAUSED):
print!("CD Paused\n");
break;

case (SQSTAT DONE):
print!("Last Play finished normally\n");
break;

case (SQSTAT ERROR):
print!("Last Play finished with error\n");
break;

}

// Position
if (Addrlnfo == ADRCTL POSITION)

{
printf("Current track %d, index %d\n",

ReqSubQ.Track,
ReqSubQ.Index);

printf("Sector %d into CD, sector %d into track\n",
ReqSubQ.DiskPosition.LSN,
ReqSubQ.TrackPosition.LSN);

)
}

/★★★★★★★★★★★★★★★★★★★★★★★★★

CDTV SUBQMSF
★★★★Y*********★★★★★★★★★★★/

Programming and CDTV Multimedia 95

325 CDTV Specifics :CDTV Device

struct CDSubQ ReqSubQ;
UBYTE Addrlnfo;

IOReq->io_Command = CDTV_SUBQMSF;
IOReq->io_Offset = 0;
IOReq->io_Length * 0;
IOReq->io_Data « (APTR) ReqSubQ;
if (Err ■ DoIO((struct IORequest *) IOReq))

printf("10 Error %ld\n", Err);

// First check that it is valid
Addrlnfo = (ReqSubQ.AddrCtrl £ ADRCTL MASK);
if (Addrlnfo -« ADRCTL_NOMODE)

return; // INVALID SUBQ

switch (ReqSubQ.Status)
(
case (SQSTAT_NOTVALID) :
case (SQSTAT_NOSTAT):

return; // INVALID SUBQ

case (SQSTAT PLAYING):
print?("CD PlayingXn");
break;

case (SQSTAT PAUSED):
print?("CD Paused\n");
break;

case (SQSTAT DONE):
print?("Last Play finished normally\n");
break;

case (SQSTAT_ERROR):
printf("Last Play finished with error\n");
break;

}

// Position
if (Addrlnfo == ADRCTL POSITION)

{
printf("Current track %d, index %d\n",

ReqSubQ.Track,
ReqSubQ.Index);

printf("Minute:Second:Frame %d:%d:%d into CD, %d:%d:%d into track\n"
ReqSubQ.DiskPosition.MSF.Minute,
ReqSubQ.DiskPosition.MSF.Second,
ReqSubQ.DiskPosition.MSF.Frame,
ReqSubQ.TrackPosition.MSF.Minute,
ReqSubQ.TrackPosition.MSF.Second,
ReqSubQ.TrackPosition.MSF.Frame);

}
}

/*************************
CDTV_PAUSE ft************************/

{
I OReq- > i o_C ommand = CDTV_PAUSE;
IOReq->io_Offset = 0;
IOReq->io_Length = TRUE;
IOReq->io__Data = NULL;
if (Err « DoIO((struct IORequest *) IOReq))

printf("10 Error %ld\n". Err);
}

/**★***★ft*****************
CDTV^STOPPLAY
★*★*★***★★★★***★★★*★****★/

{
// Remember to AbortIO the current play command first
I OReq- > i o_Command = CDTV_STOPPLAY;

96 CDTV Developers Reference Manual

325 CDTV Specifics :CDTV Device

IOReq->io_Offset = 0;
IOReq->io_Length *0;
I OReq- > i o_Dat a = NULL;
if (Err = DoIO((struct IORequest *) IOReq))

printf("10 Error %ld\n", Err);

}

/******************★******
CDTV_POKESEGLSN
* **** * ********* * * * * * Hr* *** /

{
struct IOStdReq PokelOReq;
struct MinList SegList;
struct CDAudioSeg SegNode;
CDPOS NewSector;

// Use a copy of our IOReq
PokelOReq = *IOReq;

// Prepare list
NewList((struct List *) (SegList);

AddTail((struct List *) (SegList, (struct Node *) (SegNode);
SegNode.Start.LSN = 16;
SegNode.Stop.LSN * 300;

I OReq- > i o_C oramand = CDTV_PLAYSEGSLSN;
IOReq->io_Offset = 0;
IOReq->io_Length « 0;
IOReq->io_Data = (APTR) SegList.mlh_Head;
SendIO((struct IORequest *) IOReq);

// Actual "poke"
NewSector.LSN * 480;

PokeIOReq->io_Command * CDTV_POKESEGLSN;
P oke I OReq- > i o_0 f f se t « (ULONG) NewSector;
PokeIOReq->io_Length = 0;
PokeIOReq->io_Data = (APTR) SegList.mlh_Head;
if (Err = DoIO((struct IORequest *) PokelOReq))

printf("IO Error %ld\n", Err);

// Cleanup:
WaitIO((struct IORequest *) IOReq);
)

CDTV POKESEGMSF
*************************/

{
struct IOStdReq PokelOReq;
struct MinList SegList;
struct CDAudioSeg SegNode;
CDPOS NewMSF;

// Use a copy of our IOReq
PokelOReq * *IOReq;

// Prepare list
NewList((struct List *) &SegList);

AddTail((struct List *) (SegList, (struct Node *) (SegNode);
SegNode.Start.Raw * TOMSF(5, 0, 0);
SegNode.Stop.Raw = TOMSF(5, 10, 25);

I OReq- > i o_C omma nd = CDTV_PLAY SEGS LSN ;
IOReq->io_Offset = 0;
IOReq->io_Length = 0;
IOReq->io_Data = (APTR) SegList.mlh_Head;
SendIO((struct IORequest *) IOReq);

// Actual "poke"

Programming and CDTV Multimedia 97

325 CDTV Specifics :CDTV Device

NewMSF.Raw » TOMSF(6, 10, 20);

PokeIOReq->io_Command = CDTV_POKESEGMSF;
PokeIOReq->io_Of fset = (ULONG) NewSector;
PokeIOReq->io__Length = 0;
PokeIOReq->io_Data « (APTR) SegList.mlh_Head;
if (Err * DoIO((struct IORequest *) PokelOReq))

printf{ "10 Error %ld\n", Err);

// Cleanup:
WaitIO((struct IORequest *) IOReq);
}

/*************************
CDTV_MUTE *************************/

{
IOReq->io_Command = CDTV_MUTE;
IOReq->io__0ffset = 0; // Volume 0-0x7FFF
IOReq->io_Length * 1; // 0=check, l=next play stop, 2=now
IOReq->io_Data = NULL;
if (Err = DoIO((struct IORequest *) IOReq))

printf("IO Error %ld\n", Err);
}

/*************************
CDTV_FADE *************************/

{
ULONG Seconds = 2;

IOReq->io_Command = CDTV_FADE;
IOReq->io_Offset ® 0x7FFF; // Volume 0-0x7FFF
IOReq->io_Length = (Seconds * 75);
IOReq->io_Data = NULL;
if (Err = DoIO((struct IORequest *) IOReq))

printf("IO Error %ld\n". Err);
}

/*************************
CDTV_POKEPLAYLSN
*************************i

{

struct IOStdReq PokelOReq;
CDPOS StartSector;
CDPOS SecondSector;
CDPOS SectorsLength;

// Use a copy of our IOReq
PokelOReq = *IOReq;

StartSector.LSN * 16;
SectorsLength.LSN » 300;

I OReq- > i o_C ommand = CDTV_PLAYLSN;
IOReq->io_Offset * StartSector;
IOReq->io__Length = SectorsLength;
IOReq->io_Data = NULL;
SendIO((struct IORequest *) IOReq);

// Actual "poke"
SecondSector.LSN « 480;

PokelOReq- >io_Command = CDTV_POKEPLAYLSN;
PokelOReq->io_Offset « SecondSector;
PokeIOReq->io_Length = SectorsLength;
PokeIOReq->io_Data * NULL;
if (Err = DoIO((struct IORequest *) PokelOReq))

printf("IO Error %ld\n". Err);

// Cleanup:

98 CDTV Developers Reference Manual

325 CDTV Specifics :CDTV Device

WaitIO((struct IORequest *) IOReq);
}

/****************★********

CDTV POKEPLAYMSF
****T********************j

{
struct IOStdReq PokelOReq;
CDPOS StartMSF;
CDPOS SecondMSF;
CDPOS StopMSF;

// Use a copy of our IOReq
PokelOReq « *IOReq;

StartMSF.Raw * TOMSF(5, 0, 0);
SecondMSF.Raw « TOMSF(5, 40, 0);

IOReq- > i o__Command = CDTV_PLAYMSF;
IOReq->io_Of f set = (ULONG) StartMSF;
IOReq->io_Length = (ULONG) StopMSF;
IOReq->io_Data = NULL;
SendIO((struct IORequest *) IOReq);

// Actual "poke"
StopMSF.Raw « TOMSF(5, 10, 25);

PokeIOReq->io_Command * CDTV_POKEPLAYMSF;
PokeIOReq->io_Of fset = (ULONG) SecondMSF;
PokelOReq->io__Length = (ULONG) StopMSF;
PokeIOReq->io_Data = NULL;
if (Err = DoIO((struct IORequest *) PokelOReq))

printf(nIO Error %ld\n", Err);

// Cleanup:
WaitIO((struct IORequest *) IOReq);

/★♦★**★*★*★★★★★★★★****★★**
CDTV_GENLOCK
★ ★★★★★★★★★★★★★♦♦★★★★★★★★Hr j

{
IOReq->io_Command = CDTV_GENLOCK;
IOReq->io__Off set = CDTV_GENLOCK_MIXED;
IOReq->io_Length =0;
IOReq->io_Data = NULL;
if (Err = DoIO((struct IORequest *) IOReq))

printf("10 Error %ld\n". Err);

Programming and CDTV Multimedia 99

32.6 CDTV Specifics’.Bookmark and Cardmark Device Drivers

Bookmark and Cardmark Device Drivers

Overview

Bookmarks provide a means of storing CDTV application data across machine resets and power

button shut-downs. For the vast majority of CDTV machines in the world (those not equipped

with a floppy disk or hard disk drive), bookmarks serve as the only technique available to program

designers for semi-permanent data storage.

Bookmarks were designed primarily to hold tiny hints of data that could be utilized by an application

to return the user to a previously marked position within the program (hence the name “Bookmark”).

For example, an encyclopedia may provide bookmarks to help users locate commonly referenced

topics; a cookbook may indicate die previous recipe prepared; a math tutorial may recall the last

lesson successfully completed; and a game may store its top five scores.

There is, of course, a limit to how many bookmarks can be stored. They should not be thought of

nor used as a substitute for the larger, permanent storage medium of floppy disk.

Bookmark Memory

Every CDTV unit comes factory equipped with a small module of special memory for the storage

of semi-permanent data. This memory is not located in the normal main memory spaces and is not

configured into the operating system memory allocation lists. Instead, it has its own private location

which is accessed only through the proper software protocols.

Bookmark memory is a “line-backed” RAM rather than battery backed RAM. It will persist and

hold its data only while AC power is connected to the unit The CDTV power switch will not

affect the memory, but unplugging the unit or a power failure will destroy its contents. (The front

panel clock display serves as a power indicator for the bookmark RAM.) In the current hardware,

there is no provision for a capacitive power reserve to carry across momentary power failures or the

relocation of the unit to some other room.

Device Driver

The Bookmark Device Driver is responsible for managing all accesses to the bookmark memory.

It resides in the Operating System ROM of every CDTV and operates in a standard fashion as an

Amiga kernel level (Exec) device driver. The device driver was created with three purposes in

mind;

• Managing the limited amount of memory available.

• Sharing of the memory between multiple applications executing concurrently or during different

sessions.

Programming and CDTV Multimedia 101

32.6 CDTV Specifics . Bookmark and Cardmark Device Drivers

• Removing old bookmarks in favor of new ones.

• Hiding the location and size of the memory so that it may be altered or expanded in future
hardware designs.

The device driver organizes memory to appear as a ‘limitless" pool of independent bookmarks.
It provides a sort of "file system” that allows multiple applications to store small data segments
in a moderately simple way. The driver is not a standard file system however. During its design
stage, the decision was made not to use an Amiga file system (e.g., RAM disk) because it was more
important to optimize the storage capacity available to applications rather than optimize the access
mechanism. As a result, the storage overhead of a bookmark is low thus more bookmarks can be
saved.

Cardmarks

In addition to the factory equipped bookmark RAM, CDTV also provides ann alternate storage
mechanism: credit card style memory cards. These cards allow consumers to expand the memory
capabilities of their units in a number of ways. The cards can be used for

• Expanded bookmark storage (usually battery backed).

• ROM based Operating System enhancements (libraries and devices).

• ROM based program applications.

• Expansion RAM for increased main memory.

• Recoverable RAM disks (optionally battery backed).

• Diagnostic testing.

• Special hardware enhancements.

The bookmark.device driver has the capability to access these cards when expanded bookmark
storage is desired. They can be formatted for use with bookmarks (often called cardmarks) and
managed in a fashion identical to that used with bookmarks.

Applications have major advantages when it comes to storing data in cardmarks. The card’s memory
is normally much larger than the line-backed bookmark memory, which means a greater number of
bookmarks can be saved, and each bookmark can be larger in size. Also, memory cards are usually
backed up with battery power, thus protecting them from loss of power.

There is, however, one serious drawback to a memory cards: they can be removed from the machine.
Just because your program wrote a cardmark does not mean you will always be able to access it
Also, a user may select an older memory card containing out of date cardmarks. If not dealt with
properly in your application, this could lead to consumer confusion. In some cases you may want
to create a date stamp in your data.

One possible approach for using cardmarks is to first check to see if a card is available. If so, use
it otherwise use a normal bookmark. It is a good idea to tell the user that a "bookmark is being
placed” on the card, so that he can be aware that the card is being used and note what card it is.

102 CDTV Developers Reference Manual

32.6 CDTV Specifics .'Bookmark and Cardmark Device Drivers

Principles
This section describes the general principles of bookmarks and the bookmark.device driver. These
principles hold for both bookmarks and cardmarks created with the CDTV bookmark.device.

Initialization

When CDTV is started for the first time after a full power loss, its line-backed bookmark memory
is configured and initialized. The memory is scanned to determine its size, it is cleared to zero, and
a header is placed within it, marking that it is free. The bookmark.device driver is initialized and
becomes available as a standard Exec device.

If a memory card is present, it is examined to determine whether it is already being used for
bookmarks, free to be used for bookmarks, or not available for use. If the card is being used for
bookmarks, its device driver is initialized. If the card is free, it is scanned to determine its size,
cleared to zero, set up for bookmarks, and its driver is initialized. If a card is not available, it is left
unused, and the cardmark.device driver is not initialized.

Identifiers

In order for multiple applications to access their own specific bookmarks, each bookmark must
contain an identifier to distinguish it from the others. Each bookmark is labeled with a unique code
called a Bookmark Identifier or BID. A BID must be used to create, read, write, and delete a specific
bookmark.

A BID is made up of two parts: a manufacturer code and a product number. The manufacturer code
identifies the company or organization to which the bookmark belongs. These codes are issued by
Commodore to anyone wishing to develop for CDTV. There are 65,536 (64K) codes available. We
can only hope that we will someday run out To obtain such a code you must call CATS. Please
do not make up your own codes—this can have a bad effect on consumers There are a lot of other
more interesting challenges in the world.

The first few manufacturer codes are reserved for Commodore. For example, should you want to
access the CDTV preferences, you will use a Commodore code of0001. Other Commodore codes
are used for testing, BID expansion, memory expansion, examples, etc.

The product number identifies the application related to the bookmark. It is normally just a product
number created by you. There are 64K possibilities, so you are limited to making only 65,535
applications. At that point you can retire or start a new company and get a new manufacturer
code. It is sometimes useful to divide the product number to allow multiple bookmarks for a single
product For example, the upper twelve bits may be what you use to identify your product and the
lower four bits may indicate die bookmark number.

The actual form of a BID is specified in the bookmark.h file as:

structure BookmarkID
{
UWORD Manufacturer;
UWORD Product;
};

A macro called MAKEBID is also defined for creating BID constants.

Programming and CDTV Multimedia 103

32.6 CDTV Specifics . Bookmark and Cardmark Device Drivers

Content

The content of your bookmark may take any form needed by your application. You may want to
use it for storing sector/page/screen/button/line numbers to indicate a return point, a hash value that
determines where to resume or what you were doing, character strings, path/directory/file names,
high-scores, etc.

The guiding rule is make whatever you store as small as possible. With limited space in the
bookmark memory, the smaller the average bookmark, the more will fit If you can get by with just
a few bytes, do so. For example, don’t waste space by storing 32 bit numbers that only range from
one to ten. Chop them down to at least a byte in size.

Another way to reduce bookmark size is to use various index, offset and table approaches. For
example, if you need to save four text strings out of a set of4000, you could save space by placing
the strings in a file, and saving only the file byte offsets in the bookmark. Better yet store an index
into a table of offsets. If you need to store a set of file names, make your file names numeric and
store them as binary in a bookmark. If you are writing a game that can be saved in one of 25000
states and you have 50 MBytes free on your CD, you could save the index in a bookmark, and use
the CD to store the actual state information. Finally, if you must save textual words, save tokens.
You might even want to use the approach of letting your most common 127 words be stored as
bytes, and the remaining set stored as 16 bit words.

Bookmarks over a certain size may not be storable within bookmark memory. The device driver will
not accept a bookmark that is larger than 1/16 the total size of the bookmark RAM. To determine
the maximum size allowed, use the driver’s MAXSIZE command.

Aging

Over time it is likely that the CDTV consumer is going to fill his bookmark memory to the point
where no additional bookmarks will fit When this happens, the device driver will start removing
older bookmarks in order to make mote space. To the consumer, it just looks like the machine
forgot something done “a while back”. This is a natural way for people to think about it

Two factors determine what bookmark will be removed: priority and age. The priority of a
bookmark is assigned by the programmer when it is created and can be modified later. It can range
from -128, a very low priority, to +127, the highest priority. The default or standard value is zero.
Bookmarks with a higher priority will remain over a longer period relative to other bookmarks.

You may have a difficult time deciding the priority for your bookmarks. In general, consider the
consumer’s interest and use the lowest priority possible. By application categories, the following
values are suggested:

+40 Education
+20 Reference
0 Arts and Leisure
-20 Music
-40 Entertainment

What’s the logic here? Just because Timmy plays twenty-seven games in an evening doesn’t mean
that he should blow away Dad’s Car Repair Encyclopedia, Mom’s Italian Language Lesson, or
Grandma’s Blueberry Pie Recipe (especially that). Think about who bought the machine.

104 CDTV Developers Reference Manual

32.6 CDTV Specifics .Bookmark and Cardmark Device Drivers

Of course, every developer is naturally going to think that her application is more important than
the others. That approach is not going to work. If all priorities are set to 60, the net effect is the
same as everyone setting it to zero. When in doubt, use zero.

Another approach is to let the user decide. If you present a menu for saving bookmarks, you might
allow the user to decide if the item is “very important” or “not so important”. Don’t give 256
priority choices, just a few to keep it simple.

As a bookmark remains in memory, it ages. The age is an indication of how long it has been hanging
around unreferenced. As a bookmark ages, it becomes more likely that it will be removed to make
room for newer bookmarks.

Whenever a bookmark is referenced through a read or a write command, its age is reset This causes
a bookmark to be “reborn” giving it an extended life. This seems like a natural approach, as die
most recently used applications should have the “youngest” bookmarks.

Program Access

Access to bookmarks is achieved through the standard Exec Device Driver interface. The device
driver is accessed by calling the Exec Library function OpenDeviceO. For Bookmark RAM, the
name "bookmark.device" is used; for Cardmark RAM use "cardmark.device". The BID is passed
in the Unit number parameter to OpenDeviceO-

BYTE error;

error * OpenDevice("bookmark.device", MY_BID, IOReq, 0);

This must be done before attempting to do any operations with the bookmark.device driver. You
always set the BID whether the bookmark exists or not When a bookmark with the given BID does
exist the IOReq will be linked to it through a couple of its internal fields.

When accessing a bookmark in any way, it is a good idea to open the bookmark, make changes, and
then dose it Do not leave it open for die full length of your application.

PROGRAMMERS BEWARE

1. Bookmarks are garbage collected and relocated from time to time. Do not attempt to access a
bookmark directly in memory, it may move on you.

2. Both the size and location of the Bookmark RAM will change in coming months as CDTV
is improved. Your application will remain unaffected so long as it only accesses bookmarks
through the spedfied device driver.

Once a bookmark has been opened, you can read it over-write it update it dear it etc. The details
of these operations will be discussed in the “Programming” section and in the “Reference" section.

Programming

This section describes the details of programming to obtain the best results from the bookmark and
cardmark devices. It will explain the primary approach for using the device driver, creating and
accessing bookmarks, as well special information on initializing and formatting new memory cards.

Programming and CDTV Multimedia 105

32.6 CDTV Specifics . Bookmark and Cardmark Device Drivers

Device Driver

The bookmark-device is a standard Exec style device driver as documented in Chapter 19 of the V1.3
Amiga ROM Kernel Reference Manual: Libraries and Devices. All device commands are performed
through I/O requests sent to the device and all of these commands are executed synchronously (there
are no asynchronous commands). The device also supports the formatting and initialization of other
memory devices such as memory cards.

The bookmark-device driver resides in the Operating System ROM of every CDTV. It is referenced
by programs through its device node name "bookmark-device" or "cardmark-device" depending on
the type of storage desired. As is the accepted practice for Exec device drivers, all characters in the
device names must be lower case.

The bookmark.device driver operates with a standard I/O request structure IOStdReq as found
in the header file exedio.h. You can locate this structure within your application's program data
segment, or you can allocate it in Chip RAM (There is no Fast RAM in CDTV units, though this
may change in the future). It must be property initialized before being used (See examples in the
RKM and below). You can, of course, reuse the same I/O request structure as much as you need.

The sequence to initialize a typical I/O request might look like:

struct MsgPort "IOPort; /* pointer to the message port */
struct IOStdReq "IOReq; /" pointer to the I/O request */

IOPort = CreatePort(0,0); /* create the message port "/

if (IOPort == NULL) /" call Error() if port was not created "/
Error(NO_PORT);

IOReq « CreateStdIO(IOPort); /* create the I/O request */

if (IOReq == NULL) /* call Error() if request was not created */
Error(NO_REQUEST);

The ErrorO function and error constants are not part of the system, they are for you to provide.
Normally they would free and close any resources, print a message to the user, and exit

Once initialized you can open the device with the OpenDeviceO function. This finds the device
driver and binds it to the request:

To open the bookmark-device:

if (OpenDevice("bookmark-device", MY_BID, IOReq, 0)) /* open the device */
Error(OPEN_DEV);

To open the cardmark-device:

if (OpenDevice("cardmark-device", MY_BID, IOReq, 0))
Error(OPEN_DEV);

As shown, the unit number (second parameter) contains the Bookmark Identifier (BID). The flags
(last parameter) should be zero for future compatibility.

If the device cannot be opened, an error is returned. This happens if the device driver for a particular
type of memory cannot be found. The bookmark-device should always open (unless the memory
is defective). The cardmark-device will only open if there is a valid memory card (See section on
“Initializing Cards” below).

106 CDTV Developers Reference Manual

32.6 CDTV Specifics .Bookmark and Cardmark Device Drivers

The requests are now ready to be put to use for I/O. The examples in the rest of this chapter will
gggmrw*. that the device has been opened as shown above. When finished with the requests, they
should be passed to CloseDeviceO before being deleted or freed.

Performing Commands

Bookmark device commands are performed in exactly the same fashion as other Exec devices. The
DoIOO function will perform synchronous commands, that is, it will not return until the command
has completed. The SendlOO function also works, but provides no extra advantage because of the
synchronous nature of the device.

Before performing a command, the I/O request structure must be set up with the various parameters
of the command. For instance, a read might be set up in the following manner

IOReq->io_Offset = 0; /* start at byte 0 */
IOReq->io_Length * -1; /* read to end of bookmark*/
IOReq->io_Data » Buffer; /* put them in Buffer */
IOReq->io_Command = CMD_READ; /* read */

The io_Command field always indicates the command to execute. The command constants are
supplied in the header file bookmark.h. The io.JOffset, io_Length, and io-Data fields will vary
depending on the command. Normally, the io_Offset contains the starting point for a command.
In the case of the CMD_READ above, it holds the starting byte number. The io-Length contains
either the size of the bookmark, or as in the case above, -1, indicating NULL-termination. The
io-Data is used in only a few commands when either a data buffer is needed or additional parameters
are required. It should be set to NULL for all other commands.

SPECIAL NOTE ABOUT io-Length. In the current version of the bookmark.device,
the io-Length field must be set to either the length of the bookmark you are accessing (as
set for the BD-CREATE command that created the bookmark), or -1. This means you
may only do partial reads and writes from an offset to the end of the bookmark, not from
the beginning (or an offset) to a point before the end of the bookmark. Future versions of
the device will probably change this behavior.

To perform a synchronous command, pass the request to DoIOO:

DoIO(IOReq);

The function will return when the command has completed. If an error occurs in the command, it
will be returned in the io-Error field of the request A zero indicates no error. The error value is
also returned from DoIOO so you may want to take advantage of it:

if (DoIO (IOReq))
Error(IO_FAILED);

The actual error value will depend on the command executed. See the header file bookmark.h for
error values.

For several commands, there is additional information in the io_Actual field of the I/O request
This information is dependent on the command executed. Normally it is related to the value placed
in the io_Length field of the request For example, a CMD_READ would return the total number
of bytes read.

Programming and CDTV Multimedia 107

32.6 CDTV Specifics .Bookmark and Cardmark Device Drivers

Aborting Commands

Commands cannot be aborted because the bookmark.device driver only processes them in a syn¬
chronous fashion.

Commands

All of the bookmark.device driver commands are defined in the bookmark.h header file. From these
commands the standard set used by CDTV applications are:

Command Num Operation

CMD_READ 2 Read data from bookmark.
CMD_WRITE 3 Write data to bookmark.
CMD-UPDATE 4 Reset bookmark age.
CMD.CLEAR 5 Clear bookmark contents.
BD.CREATE 13 Create new bookmark.
BDJDELETE 14 Delete bookmark.
BD_MAXSIZE 15 Return maximum bookmark size.
BD_SIZEOF 17 Return the size of a bookmark.
BD-SETPRI 18 Set the priority of a bookmark.

The remaining commands are designed for special purposes and would not normally be a part of
applications.

Some of these commands are helpful for debugging and testing your applications, and should be
removed before your final release. A few other commands are meant to be used by memory card
vendors as a means of formatting new memory cards. Specialized OEMs for vertical applications
may also use these commands.

Command Num Operation

CMD-RESET 1 Reset the bookmark memory.
BD_TYPEMEM 9 Return RAM type.
BD.SIZEMEM 10 Return RAM size (destructive).
BDJNITMEM 11 Initialize RAM.
BD.CREATEDEV 12 Create new device driver.
BD_AVAIL 16 Return number of bytes free in memory.
BD-CHECK 19 Checksum bookmark memory.
BDJPURGE 20 Purge bookmark memory.
BD-DUMP 21 Dump bookmark memory to main memory.
BD-LOAD 22 Load bookmark memory from main memory.

108 CDTV Developers Reference Manual

32.6 CDTV Specifics . Bookmark and Cardmark Device Drivers

Creating a Bookmark

Creating a new bookmark is easy and is absolutely necessary before the bookmark can be used for
writing, reading, or other operations.

To create a bookmark simply follow these steps:

1. Contact Commodore to obtain a manufacturer ID number. You must do this if you want to use
bookmarks in your applications, and Commodore has agreed to give them out without a fuss.
So for this example only, if your number is 0000, you might create a bookmark identifier of:

fdefine MY_BID 0x00000001

2. Determine what you are going to store. Use a data structure if you so desire:

struct MyBookmark
{
UWORD SectorNum;
UBYTE PathNum;
UBYTE UserOptions;
};

3. Calculate the maximum size of your bookmark. If it is a structure you should be able to get by
with sizeofQ in most cases. If you have variable length bookmarks, you will need to know the
maximum length.

fdefine MAX_BOOKMARK sizeof(struct MyBookmark)

4. Create the I/O reply port and the I/O request:

struct MsgPort *IOPort;
struct IOStdReq *IOReq;

IOPort - CreatePort(0,0);

if (IOPort — NULL)
Error (NO__PORT);

IOReq = CreateStdIO(IOPort);

if (IOReq — NULL)
Error (NO__REQUEST);

5. Open the bookmark.device driver. Use your own BID even though it should not exist yet:

if (OpenDevice("bookmark.device", MY_BID, IOReq, 0))
Error(OPEN_DEV);

6. Determine and set the aging priority of your bookmark.

IOReq->io_Node. ln_Pri * -10;

7. Set up the parameters to the create command:

IOReq->io_Offset = MY_BID;
IOReq->io_Length - MAX_BOOKMARK;
IOReq->io_Data = 0;
IOReq- >io_Command = BD_CREATE;

8. Now you are ready for action. Create the bookmark:

Programming and CDTV Multimedia 109

3.2.6 CDTV Specifics :Bookmark and Cardmark Device Drivers

DoIO (IOReq) ;

9. Do not assume that it worked. Check for errors:

switch (IOReq->io Error)
{
case 0:

msg = NULL;
break;

case BDERRJFOOBIG:
msg = "bookmark is larger than allowed";
break;

case BDERR_EXISTS:
msg = "bookmark with this identifier already exists";
break;

case BDERR_NOSPACE:
msg = "no space is available for bookmark"
break;

}

if (msg)
{
printf("ERROR IN CREATE: %s\n", msg);
Handle error
)

That’s it If there were no errors you know have a bookmark. The command actually allocated the
specified amount of space within the bookmark RAM, pushing older bookmarks out if necessary.

These Things Take Time. Be prepared for a short delay (milliseconds) from time to
time. The bookmark memory space may need to be compacted if one or more of the
older bookmarks must be deleted. This operation is performed during the BD-CREATE
command. The length of the delay is variable depending on the number, size and positions
of bookmarks. Also larger card memories will have longer delays.

It is important to realize that even though a BID is used in the call to OpenDeviceO. bookmark
memory will not be associated with the request until the create has been done.

Don’t forget to close the bookmark.device with CloseDeviceQ when you are finished with it.

Writing and Reading

Once a bookmark exists, you can use the standard Exec I/O commands for writing its contents and
reading it back.

To write a bookmark:

1. Use the same BID and data structure you developed earlier in the create operation.

2. Create the I/O reply port and the I/O request:

struct MsgPort *IOPort;
struct IOStdReq *IOReq;

IOPort = CreatePort(0,0);

if (IOPort == NULL)
Error(NO_PORT);

110 CDTV Developers Reference Manual

32.6 CDTV Specifics . Bookmark and Cardmark Device Drivers

IOReq = CreateStdIO(IOPort);

if (IOReq == NULL)
Error(NO_REQUEST);

3. Open the bookmark.device driver. Use your BID here:

if (OpenDevice("bookmark.device", MY_BID, IOReq, 0))
Error (OPENJDEV) ;

4. Put data into your bookmark structure:

struct MyBookmark MB;

MB.SectorNum = Sector;
MB.PathNum = Path;
MB.UserOptions = Options;

5. Set up the parameters to the write command:

IOReq->io_Of fset = 0;
IOReq->io_Length ■* -1;
IOReq->io_Data = 4MB;
IOReq->io_Command = CMD_WRITE;

6. Write the bookmark:

DoIO(IOReq);

7. Check for errors:

switch (IOReq->io_Error)
{

case 0:
msg = NULL;
break;

case BDERR_NOMARK:
msg = "bookmark does not exist";
break;

case BDERR_PASTEND:
msg = "attempt to write more than allowed";
break;

case BDERR_BADARGs
msg * "bad I/O argument was passed"
break;

if (msg)

printf("ERROR IN WRITE: %s\n", msg);
Handle error
}

else
printf ("%d BYTES WRITTEN\n", IOReq->io_Actual) ;

If the io—Offset has a value other than zero, it is used as a byte offset into the bookmark. This
allows you to change subfields of the bookmark independently.

After the command, the io_Actual field indicates the number of bytes written.

Programming and CDTV Multimedia 111

32.6 CDTV Specifics '.Bookmark and Cardmark Device Drivers

Reading A Bookmark

To read a bookmark, use the same steps 1,2, and 3, skip step 4, then:

5. Set up the read command:

IOReq->io_Offset = 0;
IOReq->io_Length = -1;
IOReq->io_Data = &MB;
IOReq->io_Command = CMD_READ;

6. Read the bookmark:

DoIO(IOReq);

7. Check for errors. Use the same approach as above.

Deleting A Bookmark

If your bookmark is no longer needed nor desired, remove it from memory to make room for other
applications.

To delete a bookmark:

1. Use the same BID and data structure you developed earlier in the create operation.

2. Create the I/O reply port, the I/O request, and open the device as shown in the previous
examples, then

S. Set up the parameters to the delete command:

IOReq->io_Of fset = 0;
IOReq->io__Length =0;
IOReq->io_Data = 0;
IOReq->io_Command = BD__DELETE;

6. Delete the bookmark:

DoIO(IOReq);

7. Check for errors:

switch (IOReq->io_Error)
{

case 0:
msg = NULL;
break;

case BDERRJ40MARK:
msg * "bookmark does not exist";
break;

}

if (msg)
{
printf("ERROR IN DELETE: %s\n", msg);
Handle error
)

112 CDTV Developers Reference Manual

132.6! CDTV Specifics .Bookmark and Cardmark Device Drivers

Creating Cards

Card memory vendors or publishers may in some cases need to devise a means for initializing new

memory cards and prepare them for either bookmark or non-bookmark use.

Don’t Use This Code. It should be stressed that the code in this section is nor to be used

in CDTV applications. If you do, expect your program to break in a few months when the

hardware is revised. It has been included because you may be able to use it for limited

types of testing

Memory cards are classified into the following types. The first column is the value (hex or ASCII)

present in the first word of the memory.

BK bookmark initialized RAM

RW expansion RAM

RD recoverable RAM disk

RO special system/application ROM

OK reserved for something else

$1111 system diagnostics

When the system bootstraps, the bookmark.device examines this memory to determine its type. If

it is BK, it assumes the memory contains valid bookmarks. If it is any of the other types, it ignores

the card, otherwise it initializes the memory for new bookmarks.

If you are selling a card to be used as expansion RAM or a special RAM disk you need to preset

your card to RW or RD. There is another way to do this safely from a utility CD or floppy, but it is

beyond the scope of this document.

To create a memory card with preset bookmarks takes a few special commands. The correct

sequence is:

1. Define the location of the card memory and its maximum size. Do not use this in CDTV

applications!

(define CARD_MEM OxEOOOOO
(define MAX_SIZE 0x080000

2. Create the I/O reply port and the I/O request:

struct MsgPort *IOPort;
struct IOStdReq *IOReq;

IOPort = CreatePort(0,0);

if (IOPort == NULL)
Error(NO_PORT);

IOReq = CreateStdIO(IOPort);

if (IOReq — NULL)
Error (NO__REQUEST);

3. Open the bookmark.device driver using a zero BID:

if (OpenDevice("bookmark.device", 0, IOReq, 0))
Error(OPEN DEV);

Programming and CDTV Multimedia 113

32.6 CDTV Specifics ‘.Bookmark and Cardmark Device Drivers

4. Check the type of memory:

IOReq->io_Of fset = 0;
IOReq->io__Length = 0;
IOReq->io_Data = CARD_MEM;
IOReq->io Command « BD TYPEMEM;
DoIO(IOReqJ;

if (IOReq->io_Actual) /* Is it available or not? */

puts("Card memory already in use");
Handle error;
>

S. Find the size of the memory. This is a destructive test so use it with care.

IOReq->io_Offset = 0;
IOReq->io_Length = MAX_SIZE;
IOReq->ioJ)ata = CARD_MEM;
IOReq->io_Command = BD SIZEMEM;
DoIO(IOReq);

if (IOReq->io Actual == 0) /* Is it there? */
{
puts("Memory card is not present");
Handle error;
}

6. Initialize the memory, getting it ready for bookmarks:

IOReq->io_Offset = 0;
IOReq->io_Length = IOReq->io_Actual; /* the size */
IOReq->io_Data = CARD_MEM;
IOReq->io_Command = BD INITMEM;
DoIO(IOReq);

7. At this point you can reset your machine or initialize the cardmark.device driver. In theory, it
would probably be better to reset your machine, but if this creates problems for your initializing
program, you can start the cardmark.device driver with the code below.

/* Allocate device name in memory */
name = AllocMem(strlen("cardmark.device")+1,0) ;

if (!name)
HandleError(...); /* don't return */

strcpy(name, "cardmark.device");

IOReq->io_Of fset = name;
IOReq->io_Length =0;
IOReq->io_Data * CARD_MEM;
IOReq- >io__Command = BD CREATEDEV;
DoIO(IOReq);

if (! IOReq->io_Actual)
HandleError("cannot initialize cardmark device");

The astute programmer may recognize that it is possible to create bookmark devices anywhere
in memory. All you need to do is perform an AllocMemO then pass the memory address on to
BD_IN 1TMEM, then B D_CREATEDEV. This is one way to simulate the operation of bookmarks
without actually accessing the bookmark or cardmark memories. Again, this should only be done
for testing purposes and not applications.

114 CDTV Developers Reference Manual

CDTV Specifics . Bookmark and Cardmark Device Drivers 3.2.6

Testing Hints

Finally, if your application makes extensive use of bookmarks, you may want to use a few special

commands to make your testing easier.

The bookmaik and cardmaik memories as a whole or in part can be transferred to and from main
memory. This allows you to create programs that load an entire set of bookmarks before a test
jv»ging See the reference section for details on the BD—DUMP and BD-LOAD commands.

Also, it is a wise idea to verify before application release that your bookmark memory is free from
wild pointer hits and corruption. To do this, do the BD—CHECK command at the start of your
program, then again every so often. Set the io-OfTset field TRUE when you first do the command
and after every bookmark command that modifies the memory. Whenever you receive a non-zero
result, southing has modified bookmark memory! See the reference section for more information.

Programming and CDTV Multimedia 115

32.6 CDTV Specifics .'Bookmark and Cardmark Device Drivers

Bookmark Device Driver Command Reference

CMD.RESET

Reset the bookmark/cardm ark memory to its initial, cleared power-on state. (For testing purposes
only.)

Inputs

io_Command= CMD_RESET;
io_Offset « 0;
io_Length = 0;
io_Data =0;

Outputs

ErrorCode = io_Error;

Description

This command resets bookmark or cardmark memory to its initial configuration state. The entire
memory is cleared and all marks are lost This operation is not suggested for released programs,
but can be used for application testing when it is necessary to clear mark memory to a known state.

Note that for this command to work correctly, the device memory header must be intact. This com¬
mand is not to be used to initialize new, blank, or unformatted memory devices (see BD-INITMEM).

Example

extern struct IOStdReq *IOReq; /* 10 request opened earlier */

IOReq->io__Command = CMD_RESET; /* That's all folks */
IOReq->io_Offset = 0;
IOReq->io_Length = 0;
IOReq->io_Data = 0;
DoIO(IOReq);

Errors

None

Related Commands

BD-INITMEM
BD-CREATEDEV

CMD-READ

Read data from an existing bookmark.

Inputs

io_Command= CMD_READ
io_Offset = ByteOffset
io_Length = NumberOfBytes
io Data = Buffer

116 CDTV Developers Reference Manual

3.2.6 CDTV Specifics .Bookmark and Cardmark Device Drivers

Outputs

ErrorCode = io_Error
BytesRead = io_Actual

Description

Transfer the bookmark into memory. The bookmark must already exist (BD_CREATE) and contain

data (CMD_WRITE).

If a -1 is sperified for the length, the entire remaining contents of the bookmark are transferred.

The actual number of bytes read is returned in io_Actual.

If io_Offset + «n Length exceeds the size of the bookmark, a BDERR-PASTEND occurs and no

data is read.

Each time a bookmark is read, its age is reset, extending the life of the bookmark in memory.

WARNING: Never attempt to access a bookmark directly in bookmark/cardmark memory
space. Bookmark space is compacted from time to time and bookmarks may be relocated

without your knowledge.

Example

extern struct IOStdReq *IOReq; /* 10 request opened earlier */

char Buffer [52];

IOReq->io_Command = CMD_READ;
IOReq->io_Offset = 0;
IOReq->io_Length = 52;
IOReq->io_Data = Buffer;
if (DoIO(IOReq)) ProcessError(IOReq);

printf("%d bytes read/n", IOReq->io)_Actual);

IOReq->io_Command - CMD_READ;
IOReq->io_Offset - 10;
IOReq->io_Length = -1;
IOReq->io_Data = Buffer;
if (DoIO(IOReq)) ProcessError(IOReq);

printf ("%d bytes read/n", IOReq->io_Actual;

Errors
NOMARK no bookmark exists
PASTEND attempt read more than possible
BADARG bad I/O argument

Related

CMD_WRITE
BD-CREATE

Programming and CDTV Multimedia 117

32.6 CDTV Specifics . Bookmark and Cardmark Device Drivers

CMD.WRITE

Write data to an existing bookmark.

Inputs

io_Command= CMD_WRITE
io_Offset = ByteOffset
io_Length = NurnberOf Bytes
io_Data = Buffer

Outputs

ErrorCode = io_Error
BytesRead « io_Actual

Description

Transfer from memory into the bookmark. The bookmark must already exist or have been created
with BD-CREATE.

The maximum size of the transfer is limited to the maximum size of the bookmark as specified in
the original create operation. If a -1 is specified for the length, the full bookmark size is used for
the transfer.

The actual number of bytes written is returned in io_Actual.

If io-Offset + io-Length exceeds the size of the bookmark, a BDERR—PASTEND occurs and no
data is written.

Each time a bookmark is written, its age is reset, extending the life of the bookmark in memory.

WARNING: Never attempt to access a bookmark directly in bookm ark/cardm ark memory
space. Bookmark space is compacted from time to time and bookmarks may be relocated
without your knowledge.

Example

extern struct IOStdReq *IOReq; /* IO request opened earlier */

char Buffer[] = "Save this string';

IOReq->io_Command ® CMD_WRITE;
IOReq->io_Offset =* 0;
IOReq->io_Length * /* string length with terminator */

strlen(Buffer) + 1;
IOReq->io_Data = Buffer;
if (DoIO(IOReq)) ProcessError(IOReq);
printf("%d bytes written/n", IOReq->io_Actual);

IOReq->io_Command = CMD_WRITE;
IOReq->io_Offset *= 5;
IOReq->io_Length « 4;
IOReq->io_Data = fiBuffer[5]; /* write just "this" */
if (DoIO(IOReq)) ProcessError(IOReq);
printf("%d bytes written/n", IOReq->io_Actual);

Errors
NOMARK no bookmark exists
PASTEND attempt write more than possible
BADARG badl/O argument

118 CDTV Developers Reference Manual

32.6 CDTV Specifics .Bookmark and Cardmark Device Drivers

Related

CMD-READ
BD-CREATE

CMD.UPDATE

Reset the age of a bookmark.

Inputs

io_Command= CMD_UPDATE
io_Offset ■ 0
io_Length = 0
io Data = 0

Outputs

ErrorCode = ioJBrror

Description

Reset the age of a bookmark, thus extending its life in memory.

The age of a bookmark is used to determine its priority for being replaced by other bookmarks
requiring memory. When a bookmark reaches a certain age, it becomes a candidate for removal so
its memory can be reused. When its age is reset, it is renewed for another full lifespan.

The aging priority of a bookmark is initially set by the BD_Create command, and it may be changed
with the BD-SETPRI command.

The CMD-READ and CMD_WRITE commands automatically reset the age of a bookmark.

Example

extern struct IOStdReq *IOReq; /* IO request opened earlier */

IOReq->io_Command = CMD_UPDATE;
IOReq->io_Offset * 0;
IOReq->io_Length = 0;
IOReq->io_Data = 0;
if (DoIO(IOReq)) ProcessError(IOReq);

printf("Updated/n");

Errors
NOMARK no bookmark exists

Related

BD-CREATE
BD-SETPRI

Programming and CDTV Multimedia 119

3.2.6 CDTV Specifics .Bookmark and Cardmark Device Drivers

CMD.CLEAR

Gear the contents of a bookmark.

Inputs

io_Command= CMD_CLEAR
io_Offset ® 0
io_Length = 0
io Data ■ 0

Outputs

ErrorCode = io Error

Description

Gear the entire contents of a bookmark to zero, but do not delete the bookmark.

This command is only needed if you wish to erase the contents of a bookmark, but not free its
memory.

When a bookmark is created (BD_G*EATE), it is cleared automatically.

The age of the bookmark is reset.

Example

extern struct IOStdReq *IOReq; /* IO request opened earlier */

IOReq->io_Command = CMD_CLEAR;
IOReq->io_Offset * 0;
IOReq->io_Length = 0;
IOReq->io_Data =0;
if (DoIO(IOReq)) ProcessError(IOReq);

printf("Cleared/n");

Errors
NOMARK no bookmark exists

Related

BD_WRITE

BD.TYPEMEM

Return the type code of a particular module of the bookm ark/cardm ark memory space. (Not for
applications!)

Inputs

io_Command= BD_TYPEMEM
io_Offset = 0
io_Length « 0
io_Data = MemoryRegion

Outputs

TypeCode = io_Actual

120 CDTV Developers Reference Manual

32.6 CDTV Specifics .Bookmark and Cardmark Device Drivers

Description

This is an internal command used primarily by memory card manufacturers, vertical market devel¬
opers, and snoopy application developers. It is used to help configure blank memory cards.

The code returned in iO-Actual determines the current use and state of the memory. The values

are:

>0 when the memory is already in use for bookmarks/cardmarks

=0 when the memory is available for use

<0 when the memory is not available (being used for diagnostics, expansion RAM, ROM,
RAMDisk, etc.)

This command has no relationship or connection with memory controlled by the Exec library. It
should not be used with general system memory.

Example

extern struct IOStdReq *IOReq; /* 10 request opened earlier */

IOReq->io_Command = BD_TYPEMEM;
IOReq->io_Offset = 0;
IOReq->io_Length =0;
IOReq->io__Data - MemoryRegion;
DoIO(IOReq);

if (IOReq->io_Actual > 0)
printf ("BooJcmark/Cardmark memory/n") ;

else
if (IOReq->io_Ac tua 1 == 0)

printf(Available memory/n");"
else

printf("In use by something else/n");

Errors

None

Related

BD-SIZEMEM
BDJNITMEM
BD_CREATEDEV

BD.SIZEMEM

Determine the size of a particular module of bookmark/cardmark memory. (Not for applications!)

Inputs

io_Command= BD_SIZEMEM
io_Offset = 0
io_Length *■ MaxSize
io_Data = MemoryRegion

Outputs

ByteSize = io_Actual

Programming and CDTV Multimedia 121

32.6 CDTV Specifics’.Bookmark and Cardmark Device Drivers

Description

This is an internal command which attempts to determine the size of a region of memory available for
bookmarks. This command is normally executed after BD_TYPEMEM indicates that the memory
is available for use.

This is a destructive memory test It will alter the contents of the memory region. It should not be
performed on active bookmark/cardmark or system memory.

Memory will be scanned to a resolution of 2K. The scan will be stopped when:

• The memory cannot hold a test value.

• The memory wraps over itself.

• The maximum size is reached as specified in io-Length.

Example

extern struct IOStdReq *IOReq; /* 10 request opened earlier */

IOReq->io_Command = BD_SIZEMEM;
IOReq->io_Of fset = 0;
IOReq->io_Length - 256 * 1024;
IOReq->io_Data = Memory Region;
Do*IO(IOReq);

printf("%d bytes in size/n", IOReq->io_Actual);

Errors

None

Related

BD-TYPEMEM
BD-JNITMEM
BD-CREATEDEV

BDJNITMEM

Initialize a particular region of bookmark/cardmark memory. (Not for applications!)

Inputs

io_Command= BD_INITMEM
io_Offset = 0
io_Length = MemorySize
io_Data = MemoryRegion

Outputs

None

Description

This is an internal command which will initialize a region of memory for use as book-
marks/cardmarks. Its primary purpose is to "format" new memory cards. It clears the memory, sets
up the memory header, and determines the maximum size of bookmarks for the memory.

122 CDTV Developers Reference Manual

132.61 CDTV Specifics . Bookmark and Cardmark Device Drivers

This command is normally executed after BD—TYPEMEM and BD. STZEMEM have been per¬

formed.

The io_Length parameter limits the amount of space to be used for storage of bookmarks (and the
header). This allows you to reserve space in the memory region for other uses.

Example

extern struct IOStdReq *IOReq; /* 10 request opened earlier */

IOReq->io_Command = BD_INITMEM;
IOReq->io_Of fset = 0;
IOReq->io_Length = MemorySize;
IOReq->io Data = MemoryRegion;
DoIO(IOReq);

Errors

None

Related

BD_TYPEMEM
BD.SIZEMEM
BD-CREATEDEV

BD.CREATEDEV

Put a new bookmaik/cardmark device on-line. (Not for applications!)

Inputs

io_Command= BD_CREATEDEV;
io__0ffset = 0;
io_Length = DeviceName;
io_Data = MemoryRegion;

Outputs

DevBase = io_Actual;

Description

This is an internal command used to create a new bookmark/cardmaik device and put it on-line.
It can be used to configure and install new memory cards. It will create and initialize an Exec
device node and its function pointers, then add the device to Exec so that it may be accessed with
OpenDeviceO.

Hie device name is passed as an argument For cardmark devices, this name should be "card-
mark.device". Be sure to allocate this name someplace where it will not be freed when your
program exits.

This command does not initialize the memory region being installed. You must use BD-JN1TMEM
before executing this command.

The device base address of the functioning device is returned in io_ActuaI. If a NULL is returned,
the MakeLibraryO function failed (out of memory).

Programming and CDTV Multimedia 123

32.6 CDTV Specifics .Bookmark and Cardmark Device Drivers

Example

Extern struct IOStdReq *IOReq; /* 10 request opened earlier */
idefine MARKNAME "cardmark.device"
char *name;

IOReq->io_Command « BD_SIZEMEM;
IOReq->io_Offset « 0;
IOReq->io_Length - 256 * 1024;
IOReq->io Data « MemoryRegion;
DoIO(IOReqJ;

size * IOReq->io_Actual;

IOReq->io_Command = BD_INITMEM;
IOReq->io_Offset = 0;
IOReq->io_Length « size;
IOReq->io_Data = MemoryRegion;
DoIO(IOReq);

name = AllocMem(Strlen(MARKNAME)+1,0);
if (!name)

BadNews ();
else

strcpy(name,MARKNAME);

IOReq->io_Command = BD__CREATEDEV;
IOReq->io_Of fset = 0;
IOReq->io_Length = (LONG) name;
IOReq->io_Data = MemoryRegion;
DoIO(IOReq);

if (! IOReq->io_Actual)
BadNews();

Errors

None

Related

BD-TYPEMEM
BD.SIZEMEM
BDJNITMEM

BD.CREATE

Create a new bookmaik/cardmark entry.

Inputs

io_Command= BD_CREATE
io_Offset = Bookmarkld
io_Length = MaxBytes
io Data = 0 and In Pri * Pri

Outputs

ErrorCode = io Error

Description

This command is used to create new bookmarks. This must be done before a CMD_WR1TE
command. A bookmark of the requested size will be allocated from the memory associated with the

124 CDTV Developers Reference Manual

32.6 CDTV Specifics .Bookmark and Cardmark Device Drivers

device you opened in the call to OpenDeviceO- The io-Offset field must contain a valid bookmark
identifier consisting of both a manufacturer id and product code. If the bookmark already exists,
you will receive an error, and the command will not be performed.

The maximum size of a bookmark is restricted to allow many bookmarks to share memory.

The priority of a bookmark comes from the ln_Pri field of the I/O Request node. This value
establishes the initial age of the bookmark. It may range between -128 and +127. You will need to
determine the importance of your bookmark relative to other bookmarks.

The contents of a new bookmark ate cleared to zero.

Example

extern struct IOStdKeq *IOReq; /* 10 request opened earlier */

char Buffer [] = "new bookmark";

IoReq->io_Command = BD_CREATE;
IOReq->io_Off set = MY_BID; /* Must be valid Manuf/Prod Id */
IOReq->io_Length = 64;
IOReq->io_Data = 0;
IOReq->io_Node. ln_Pri = 0;
if (DoIO(IOReq)) ProcessError(IOReq);

IoReq->io_Command = CMD_WRITE;
IOReq->io_Offset = 0;
IOReq->io_Length= strlen(Buffer) +1 /* string length with terminator */
IOReq->io_Data = Buffer;
if (DoIO(IOReq))

ProcessError(IOReq);

Errors
TOOBIG size is bigger than allowed
EXISTS bookmark already exists with this id
NOSPACE out of bookmark memory

Related

BD-DELETE
CMD-UPDATE
CMD_WRITE

BD_DELETE

Delete a bookmark/cardmark entry.

Inputs

io_Command= BD_DELETE;
io_Offset = 0;
io_Length = 0;
io_Data = 0;

Outputs

ErrorCode = io Error

Description

Programming and CDTV Multimedia 125

32.6 CDTV Specifics . Bookmark and Cardmark Device Drivers

This command deletes a bookmark and frees its memory.

Attempting to delete a non-existent bookmark will return an error.

If you attempt to access this bookmark once it has been deleted, you will receive an error.

Example

extern struct IOStdReq *IOReq; /* 10 request opened earlier */

IOReq->io_Command * BD__DELETE;
IOReq->io_Offset = 0;
IOReq->io_Length = 0;
IOReq->io_Data = 0;
if (DoIO(IOReq))

ProcessError(IOReq);

Errors
NOMARK no bookmark exists

Related

BD.CREATE

BD.MAXSIZE

Determine the maximum size allowed for a bookmark/cardmark.

Inputs

io_Command= BD_MAXSIZE
io_Offset = 0
io__Length = 0
io Data = 0

Outputs

ByteSize = io_Actual

Description

This command returns the maximum size permitted for a bookmark. The value returned is dependent
on the device you specified in the call to OpenDeviceO. For example, the maximum size for
cardmarks is normally larger than that of bookmarks due to the larger memory size. Also, memory
cards may vary in size.

Example

extern struct IOStdReq *IOReq; /* IO request opened earlier */

IOReq->io_Command = BD_MAXSIZE;
IOReq->io_Offset * 0;
IOReq->io_Length - 0;
IOReq->io Data * 0;
DoIO(IOReq);

printf("%d byte maximum/n", IOReq->io_Actual) ;

Errors

None

126 CDTV Developers Reference Manual

32.6 CDTV Specifics-.Bookmark and Cardmark Device Drivers

Related

BD_CREATE
BD-AVAIL

BD-AVAIL

Return the amount of free space available in bookmark/cardmark memory.

Inputs

io_Command= BD__AVAIL
io_Offset = 0
io_Length * 0
io Data = 0

Outputs

ByteSize = io_Actual

Description

This mmmanri returns the total number of bytes available in bookmark or cardmark memory. The
value returned is dependent on the device you specified in the call to OpenDeviceO-

Although a considerable amount of space may be available, applications are limited to a maximum
bookmark size to allow room for other applications.

Example

extern struct IOStdReq *IOReq; /* IO request opened earlier */

IOReq->io__Command = BD_AVAIL;
IOReq->io_Offset « 0;
IOReq->io_Length = 0;
IOReq->io_Data = 0;
DoIO(IOReq);

printf("%d bytes available/n", IOReq-io__Actual);

Errors

None

Related

BD.MAXSIZE

BD.SIZEOF

Return the size of a bookmaric/cardmaik.

Inputs

io_Command= BD_SIZEOF
io_Offset = 0
io^Length = 0
io Data = 0

Programming and CDTV Multimedia 127

3.2.6 CDTV Specifics . Bookmark and Cardmark Device Drivers

Outputs

ErrorCode = io__Error
ByteSize « io_Actual

Description

This command returns the number of types allocated to a bookmark for data storage. It does not
include system structures associated with the bookmark. The value is the same as that specified in
the originating BD-CREATE.

The size of a bookmark is not affected by reading, writing, or clearing it. The size cannot be changed
without deleting and recreating a new bookmark.

If no bookmark exists, this command returns an error.

Example

extern struct IOStdReq *IOReq; /* 10 request opened earlier */

IOReq->io_Command = BD_SIZEOF;
IOReq->io__Offset « 0;
IOReq->io_Length = 0;
IOReq->io Data = 0;
if (!DoIO(lOReq)) ProcessError(IOReq);

printf("%d bytes in size/n", IOReq->io_Actual);

Errors
NOMARK no bookmark exists

Related

BD_CREATE
BD.MAXSIZE

BD.SETPRI

Change the aging priority of a bookmark.

Inputs

io_Command= BD_SETPRI
io_Offset = NewPri.
io_Length = 0
io Data = 0

Outputs

ErrorCode = io_Error
OldPri = io__Actual

Description

This command changes the priority of a bookmark and returns the previous value. The higher the
priority of a bookmark, the longer it will remain when memory has been exhausted and garbage
collection has started.

Priorities can range between -128 and +127. The normal value is zero. Use zero if you are not sure.

128 CDTV Developers Reference Manual

32.6 CDTV Specifics-.Bookmark and Cardmark Device Drivers

The age of the bookmark is reset to a new value depending upon the new priority. (See
CMD-UPDATE.)

Before changing the priority of a bookmark, determine its importance relative to other bookmarks
(see previous chapter).

The initial priority of a bookmark comes from the ln_Pri field of the I/O request node used for
BD-CREATE. Its value establishes the initial age of the bookmark.

Example

extern struct IOStdReq *IOReq; /* 10 request opened earlier */

IOReq->io_Command'* BD_SETPRI;
IOReq->io_Of fset = -10;
IOReq->io_Length = 0;
IOReq->io_Data = 0;
if (!DoIO(IOReq)) ProcessError(IOReq);

printf("01d priority was %d/n", IOReq->io_Actual);

Errors
NOMARK no bookmark exists

Related

BD-CREATE
BD-UPDATE

BD-CHECK

Calculate the checksum for the entire bookmark/cardmark memory space.

Inputs

io_Command= BD_CHECK
io_Offset = SetFlag
io_Length = 0
io Data = 0

Outputs

ErrorCode = io_Error
Checksum = io Actual

Description

This command calculates the checksum of all words within the bookmark/cardmark memory space.
It will return zero if nothing in memory has been modified since the last checksum command;
otherwise it will return a new checksum value.

The new checksum result will not be updated internally unless the io-Offset is set TRUE (non-zero).

The primary purpose of this command is to support application debugging efforts. This command
can be called at various points in a program to determine if the bookmark/cardmark memory is
being corrupted by bad indirection pointers.

Example

extern struct IOStdReq *IOReq; /* IO request opened earlier */

Programming and CDTV Multimedia 129

32.6 CDTV Specifics'.Bookmark and Cardmark Device Drivers

IOReq->io_Command = BD_CHECK;
IOReq->io_Offset = TRUE; /* Save checksum internally */
IOReq->io_Length = 0;
IOReq->io_Data * 0;
DoIO(IOReq);

printf ("Checksums %d/n", IOReq->io_Actual);

IOReq->io_Command « BD_CHECK;
IOReq->io_Offset - FALSE;
IOReq->io_Length * 0;
IOReq->io Data =0;
DoIO(IOReq];

if (IOReq->io_Actual)
printf ("Checksum different s %d/n", IOReq->io_Actual) ;

Errors

None

Related

None

BDJPURGE

Purge the entire bookmark/cardmark memory. (Not for applications!)

Inputs

io_Command= BD_PURGE
io_Offset = 0
io_Length = 0
io Data = 0

Outputs

Description

This command erases the entire bookmark memory including all system headers. It is supplied for
testing purposes (for use with BD_DUMP, BD_LOAD) and for special memory card vendors. This
command should not be used in normal applications.

Example

extern struct IOStdReq *IOReq; /* IO request opened earlier */

IOReq->io_Command + BD__PURGE;
IOReq->io_Offset « 0;
IOReq->io_Length « 0;
IOReq->io_Data =» 0;
DoIO(IOReq):

printf ("Checksum: %d/n", IOReq->io_Actual) ;

Errors

None

Related

BDJNITMEM
BD_DUMP
BD-LOAD

130 CDTV Developers Reference Manual

32.6 CDTV Specifics-.Bookmark and Cardmark Device Drivers

BD_DUMP

Dump the bookmark/cardmark memory to main memory. (Not for applications!)

Inputs

io_Command= BD_DUMP
io_Offset = ByteOffset
io_Length * NumberOfBytes
io Data * Buffer

Outputs

BytesMoved = io_Actual

Description

This command provides a means duplicating bookmark/cardmark memories. With it you can write
a program that will dump the contents of your bookmark/cardmark memory to a disk file for later
loading back with the BD-LOAD command. This is often helpful during application testing.

The io-Offset field can be used when the memory must be buffeted in smaller chunks to conserve
memory space. When using this technique, the io-Actual field can be checked to determine when
the entire memory has been transferred.

Example

extern struct IOStdReq *IOReq; /* IO request opened earlier */
extern long file;

fdefine BUF SIZE (16 * 1024
char BufferlBUF_SIZE];
long offset = 0;

do
{

IOReq->io_Command = BD_DUMP;
IOReq->io_Offset = offset;
IOReq->io_Length - BUF_SIZE;
IOReq->io_Data * Buffer;
DoIO(IOReq);

Write (file,Buffer, IOReq->io_Actual) ; /* should check for file error */
offset += BUF_SIZE;

) while (IOReq->io_Actual == B(JF_SIZE) ;

Errors

None

Related

BD-LOAD

Programming and COTV Multimedia 131

32.6 CDTV Specifics . Bookmark and Cardmark Device Drivers

BD.LOAD

Load the bookmaik/cardmaik memory from main memory. (Not for applications!)

Inputs

io__Command= BD_LOAD
io^Offset “ ByteOffset
io_Length « NumberOfBytes
io Data = Buffer

Outputs

BytesMoved = io_Actual

Description

This command provides a means of restoring previously dumped bookmark/cardmark memories.
With it you can write a program that will load the contents of your bookmark/cardmark memory
from a disk file. This is often helpful during application testing.

This command can also be used to write memory cards as part of a mass production duplication
process.

The io-Offset field can be used when the memory must be buffered in smaller chunks to conserve
memory space.

Example

extern struct IOStdReq *IOReq; /* IO request opened earlier */
extern long file;

Idefine BUF_SIZE (16 * 1024)
char Buffer [BUFJSIZE];
long offset = 0;
long size;

while ((size = Read(file,Buffer,BUF_SIZE) > 0)
{

IOReq->io_Command = BD_LOAD;
IOReq->io_Offset = offset;
IOReq->io_Length = size;
IOReq->io_Data = Buffer;
DoIO(IOReq);

offset += BUF_SIZE;
)

Errors

None

Related

BD.DUMP

132 CDTV Developers Reference Manual

32.7 CDTV Specifics :CDTV Printer Preferences

CDTV Printer Preferences

One of the things that makes the CDTV system stand out from similar interactive consumer CD-
ROM machines is that even the base unit has I/O ports to connect to external hardware like
modems and printers. CDTV applications need to support printing wherever appropriate to push
this advantage home. The CDTV printer preferences library is designed to allow easy user selection
of printer settings as well as easy application access to those settings.

There were two problems involved in providing access to the Amiga printer drivers from a CDTV
application. The first was to determine where and how the user’s printer settings are stored. The
non-volatile RAM (NVR) seems an obvious choice for storage and it is a good one; the question
of storage format was not so obvious. It would be advantageous to retain the standard Amiga V1.3
Preferences structure to access the printer settings, especially because there is an instance of the
struct Preferences attached to the printer.driver itself. Unless we want to make a custom CDTV
printer driver, we need to retain compatibility with struct Preferences. On the other hand, we
also want to fit into a single NVR division. The solution was to create a prtprefs.library, which is
responsible for loading and saving the printer preferences to and from the NVR.

The second problem arises when you consider the question of how the user is going to change the
printer preferences settings. The V1.3 Preferences editor is not especially usable from the CDTV
remote control. In addition, it does not visually fit into the rest of the CDTV system, and contains
many more settings than the average user wants to deal with. So a special CDTV Printer Preferences
program was created which matches the Player Preferences program in appearance, and keeps the
number of choices the user can make to a minimum. The CDTV printer preferences program also
avoids the use of words to make localization simple.

You’re On Your Own If You Need More. Some graphics programs may require providing
the full range of printer preferences choices to the user. In those cases, die application will
have to bring up its own “advanced printer options” screen, and use the Intuition SetPrefsO
or UsePrtPrefsO function to communicate this information to the printer.device.

Using The Printer Preferences Library.

Using the printer preferences library is much like using any other disk based library. The
prtprefs.library resides on your application disk, in the LIBS: directory, and is opened by mak¬
ing a call to the OpenLibraryO Exec function with Mprlprefs.libraryn and 0 as the arguments.

♦include <exec/types.h>
♦include <exec/libraries.h>
♦include <cdtv/cdtvprtprefs.h>

struct Library *PrtPrefsBase

void (main(void))
{

if ((PrtPrefsBase = OpenLibrary("prtprefs.library",0)) = 0)

Programming and CDTV Multimedia 133

327 CDTV Specifics:CDTV Printer Preferences

{
printf("Error: Can't open prtprefs.library\n");
exit (20);
}

..• printerprefs code goes here

CloseLibrary(PrtPrefsBase);
>

The global variable PrtPrefsBase is used internally for all future library references until the library
is closed by the application.

This library contains code for to read the NVR into the system Preferences structure, to save the
printer portion of the system Preferences structure into the NVR, to set the System Preferences
according to the current settings, and to bring up the CDTV printer preferences editor.

The commands in this library are:

ReadPrtPrefsO
This command is used to read and uncompress the CDTV Printer Preferences stored in the
NVR into a standard Intuition Preferences structure. This routine will return an error status if
the user has never set the CDTV printer Preferences. In that case, the application should call
AskCDTVPrtPrefsO to bring up the Preferences program to give the user an opportunity to
make the appropriate settings for printing.

SavePrtPrefsO
This command is used to compress and store the printer section of a standard Amiga Intuition
Preferences structure into the NVR.

UsePrtPrefsO
This command is used to set the current printer Preferences by sending the information to
Intuition. This will be later passed on to the printerdevice.

AskUserPrtPrefsO
This command brings up the CDTVPrinterPreferences program, which allows the user to select
and modify most of the preference settings relating to the printerdevice. The CDTVPrinterPrefs
program will take about SOK when in operation. If there is not enough memory to bring up the
PrintetPrefs screen this call will fail.

Calling AmigaDOS. This library makes AmigaDOS calls. It should be called from a
process rather than a task.

Setting Up Your Application For Printing.

The prtprefs.library must be placed in the directory CD0:LIBS of your application disc so that it
may be found by the OpenLibraryO system call.

The CDTVPrinterPrefs file must be placed in the directory CD0:PREFS of your application. This
file is executed whenever the AskUserPrtPrefsO call is made by your application. In addition, the
Run command must be available in the C: directory.

The printerdevice, paralleidevice, and seriaidevice must be present in the CD0:DEVS directory.
In addition, there must be a subdirectory called PRINTERS in the DEVS directory. PRINTERS is

134 CDTV Developers Reference Manual

32.7 CDTV Specifics :CDTV Printer Preferences

where all the printer drivers for individual printers reside. Every printer your application supports
must have a corresponding driver in the devs: directory.

Basically, you need to create an arrangement on your disc as follows:

/
i
c

/ \
l l
LIBS PREFS
I I
I I
I I
I I
prtprefs.library CDTVPrinterPrefs

\
I
DEVS

printer.device

parallel.device

serial.device

printers
{ printer drivers

like EpsonX, EpsonQ, HPLaserJet...)

Once all the files are property placed on the application disc, your application will have access to
the printer.

Using The Printer Device From A CDTV Application.

Adding printing capability to a CDTV application takes some planning. While using the
printerdevice for text and graphics output is straightforward and well documented in the Amiga
ROM Kernel Reference Manuals (RKMs), to fit printing naturally into a CDTV application may
require some effort.

The first decision is the mechanism for the user to initiate printing. In general, adding a “PRINT’
icon to each of the screens is the most practical way. Another possibility is to reserve one of the
keys of the remote for printing; this make sense only if printing can be initiated at any time. If
printing is only enabled on certain screens, making the print operation a hot key function will lead
to user frustration.

The second decision is whether to print in text mode or perform graphics dumps. Naturally if
pictures or images are to be output, graphic dumps are the only possibility. But if it is just a text
entry that is going to be printed, either type of printing can be used. The benefit of the graphic dump
is that the printed page will look like the page displayed on the CDTV, format, font and all. The
drawbacks of using a graphic dump are that it takes longer to send that much data to the printer, and
that a graphics dump can take more memory than a text dump. (Memory seems to be a frequent
concern for CDTV applications.) On the other hand, text sent to the printer must be formatted to
appear at least somewhat similar to the screen display. This may require the application to contain
a separate formatting system just for the printer.

Depending on the application (and the preference of the user) it may be better to print the entire
article, rather than just the current screen. In that case there is the additional factor of the extra
memory that would be required to image the entire article for a graphics dump. The “strip printing’’
method documented in the printer device chapter of RKMs may almost be a necessity, due to
memory limits. Text printing has some advantages in that case.

When printing from a CDTV application, AmigaDOS requesters should be turned off by setting
the Process pr_WindowPtr to -1. This will turn off requesters like “Printer Trouble” and “Out of

Programming and CDTV Multimedia 135

32.7 CDTV Specifics:CDTV Printer Preferences

Paper”. The application should handle these errors itself, in a manner appropriate to the application
and CDTV. The appearance of one of these requesters can be jarring, as it is unlikely thar the
requesters will match the look of the rest of the application, especially if it is localized, not to
mention the difficulty of CANCELing one of those requesters if the Intuition pointer has been made
invisible by the CDTV application. Do not forget to restore the Process pr_WindowPtr to its
original value after printing.

Printing is one of the extra added values that a CDTV application can provide. As it is fairly easy
to add basic printing capability to many CDTV applications, this feature should become a standard
part of every CDTV application.

The autodocs for the functions in the prtprefs.library follow.

TABLE OF CONTENTS

prtprefsJibrary/AskUserPrtPrefs
prtprefs Jibrary/ReadPrtPrefs
prtprefsJibrary/SavePrtPrefs
pitprefsJibrary/UsePrtPref

prtprefsJibrary/AskUserPrtPrefs prtprefs.library/AskUserPrtPrefs

NAME

AskUserPrtPrefs—display the printer Preferences to the user.

SYNOPSIS
LONG AskUserPrtPrefs(struct Preferences *p)
DO AO

PARAMETERS

p A pointer to a Preferences structure containing printer preferences
to be examined and possibly edited by the user.

RETURNS

One of the following values:

AU-SAVE

AU_USE

AU-CANCEL

AU-BUSY

AU—LOWMEM

AU-NOTFOUND

DESCRIPTION

’Save* and 'Use’ the result preferences.

’Use’ but do not ’Save’ the result preferences.

No change in preferences (’Use’ them but ’Save’ only if they
haven’t been saved before—see ReadPrtPrefsO).

Routine is busy (another task is currently displaying the prefer¬
ences for the user).

There is not enough memory available to create the prefs display.

The prefs executable file could not be found on the disc.

136 CDTV Developers Reference Manual

32.7 CDTV Specifics :CDTV Printer Preferences

This routine will invoke the CDTV printer preferences screen editor to ask the user to inspect
the preferences that are set in the supplied Preferences structure, ’p’. Since a graphics display
is used for this editing a sufficient amount of Chip ram must be available. The user is presented
with a sub-set of the entire preferences set for his/her inspection. They will exit by selecting
an equivalent of one of the standard "Use", "Save" or "Cancel” buttons. The return code will
indicate which was selected:

AU-SAVE means "activate the resultant prefs and save them permanently". Upon this selection,
the application program would normally call UsePrtPrefsO <*nd SavePrtPrefsO-

AU-USE means "activate the resultant prefs but do not save them permanently". Upon this
selection, the application program would normally call UsePrtPrefsO only.

AU-CANCEL implies that the user does not want to edit the preferences, but would like to
keep the prefs that were in effect when the editor was first invoked. Upon this selection, the
application program should call UsePrtPrefsO if it hasn’t already, and SavePrtPrefsO only if
the preferences have not been previously saved (ReadPrtPrefsO returned FALSE). When the
user selects "Cancel", AskUserPrtPrefsO restores the supplied preferences before returning;
therefore ’p’ is always correct after this call.

Negative return codes indicate an error. Only one call to this routine can be active at any
given time, from all the Tasks in the system. An error is returned if it is busy (a non-blocking
semaphore is used to prevent multiple callers). AU_BUSY indicates that another task is already
editing the prefs. AU-LOWMEM indicates that there was insufficient memory available to
create the prefs display - free some and try again. AU—NOTFOUND indicates the that editor
executable could not be located on the disc. It could also mean the the AmigaDOS RUN
command wasn’t available for the ExecuteQ AmigaDOS operation under 1.3.

prtprefsJibrary/ReadPrtPrefs prtprefs.library/ReadPrtPrefs

NAME

ReadPrtPrefs—get the printer Preferences from NVR.

SYNOPSIS
BOOL ReadPrtPrefs(struct Preferences *p)
DO AO

PARAMETERS
p pointer to the Preferences structure to receive prefs info.

RETURNS

TRUE if the CDTV printer preferences have been previously set
FALSE if they have not

DESCRIPTION

This routine will attempt to read CDTV printer preferences from the NVR. The prefs are stored
in the supplied struct Preferences. A TRUE return indicates that the printer preferences have
been set, and therefore the returned information came from the NVR. A return of FALSE
indicates that printer preferences have not been set, and therefore a set of default information
has been returned. Note that the default information comes from the Intuition preferences,

Programming and CDTV Multimedia 137

32.7 CDTV Specifics:CDTV Printer Preferences

which ultimately comes from the "devs:system-configuration" file. This allows the default

printer preferences to be defined and setup by a developer at the time the CD-ROM is created.

This routine returns valid data in the struct Preferences fields which do not apply to the printer

or serial port. Application programs are expected to preserve this extra information if they pass
this structure back to any other routine in the prtprefs.library.

NOTE

When running on an Amiga or when the "bookmaik.device" is not available this mutiny will

always return the default preferences (from Intuition) and FALSE.

prtprefsJibrary/SavePrtPrefs prtprefsJibrary/SavePrtPrefs

NAME

SavePrtPrefs—Save the Preferences settings to NVR.

SYNOPSIS

LONG SavePrtPrefs(struct Preferences *p)
DO AO

PARAMETERS

P

RETURNS

A pointer to a Preferences structure containing the printer prefer¬

ences to be saved to the NVR

0, indicating no error, or the error code from the ’bookmaik.device’ as returned by DoIOO (see
’bookmark.h’ for possible error codes).

DESCRIPTION

This routine attempts to save the supplied printer preferences to the NVR. It will create the

bookmark if it does not already exist The error code that is returned could have resulted from

the BD-CREATE call or the CMD_WRITE call, and it should be interpreted in this context

This routine does not activate the saved preferences; use UsePrtPrefsO to do that

NOTE

-111 is a special return code which indicates that a signal bit could not be allocated for I/O with
the bookmaik.device.

This routine is non-functional on an Amiga or when the ”bookmark.device" is not available —
it will return an appropriate error in this case: BDERR_OPENFAIL (-1).

prtprefsJibraryAlsePrtPrefs prtprefsJibrary/UsePrtPrefs NAME

UsePrtPrefs—Use the printer Preferences.

SYNOPSIS

void UsePrtPrefs(struct Preferences *p)

AO

PARAMETERS

138 CDTV Developers Reference Manual

32.7 CDTV Specifics :CDTV Printer Preferences

p A pointer to a Preferences structure containing the printer prefer¬
ences to be placed into use.

RETURNS

None

DESCRIPTION

This routine will activate a set of CDTV printer preferences by passing the information along
appropriately to Intuition. This routine does not save the prefs to the NVR; use SavePrtPrefsO

to do that

NOTE

This routine expects valid data even in the struct Preferences fields which do not apply to the
printer or serial port (this is returned by ReadPrtPrefsO)-

Programming and CDTV Multimedia 139

32.8 CDTV Specifics.The Power ofCDXL

The Power of CDXL

CDXL is the name of Commodore’s exclusive data transfer technology which permits applications
to load Hata from a storage device at the fastest possible speeds. CDXL is not a filesystem or a
compression/decompression system, nor is it limited to just ’video’. It is a new way of thinking
about data transfer.

A File In Name Only. Although the term “file” is used throughout this article, it is used
for conceptual simplicity. In actuality, CDXL is not part of the filesystem, but a low-level
device driver request that operates on the raw sequential sectors of the storage device.

The Old Slow Way

Traditionally, reading data from a storage device is done through a function call or through a device
I/O request Further, each request fills only a single buffer of a specified length:

File

\

Buffer

/

Length

Programming and CDTV Multimedia 141

3.2.8 CDTV Specifics:The Power of CDXL

Further, many applications keep separate “objects" in separate files (the title screen is separate
from the sound sample is separate from the animation, etc.)* While this simplifies bookkeeping
and project organization, it forces the application to access these files as separate objects. The
inefficiency of this approach is particularly evident if the objects are related in some fashion:

Files

Open (Seek)

Memory
Blocks

Background
Screen

Transfer

\

Length

/
Gose

Open (Seek)

Sound Sample

Gose

Transfer Length

Open (Seek)

Animation

Gose

Transfer Buffer

\

/

Length

Open (Seek)

Sequencing
Data

Transfer

\

Length

/
Gose

142 CDTV Developers Reference Manual

CDTV Specifics:The Power ofCDXL 32.8

Access to separate files on a storage device usually involves a seek when moving from file to file.
On a hard drive, the time consumed by seeking is small enough to be considered insignificant On
a CD-ROM drive, however, seeks are extremely slow (up to four seconds on some inexpensive
drives) and impact heavily on CD-ROM-based applications. Thus, the above seek-intensive model
is inadequate for CD-ROM applications.

Improving The Model

Clearly, a primary key to improving performance on a CD-ROM platform is to minimize or eliminate
seeks. A good way to do this would be to collect related data objects together in a single file. This
way, the entire contents of the file can be loaded in a single operation:

Files Memory Blocks

Open (Seek)

Background
Screen

Sound Sample

Animation

Sequencing
Data

Close

Length

The primary drawback to this approach is that it is rarely practical or even possible to arrange for
the different data types to occupy contiguous areas in memory. It is usually necessary to have the
different data occupying distinct memory areas (this is particularly true of graphics intended for
display).

It is therefore necessary to modify the above model. While the data is still collected in a single file,
we no longer perform a single read, but rather a series of reads into separate buffers:

Programming and CDTV Multimedia 143

32.8 CDTV Specifics :The Power ofCDXL

Files Memory Blocks

Background
Screen

Sound Sample

Animation

i
Sequencing
Data

• Transfer

• Transfer

■ Transfer

• Transfer

\
Length

/

Length

\

/

\

/

Length

Length

Close

In this model, the data is still in a single file, and seeks are minimized. However, for the above
example, there are still four distinct transfer operations. When the read for each buffer is completed,
what happens? Data movement has stopped. You’ve filled a buffer, but the disk is still turning, and
there are buffers yet to be filled.

If your system is sufficiently quick, you can issue a new read command and perhaps catch the
next sector before it spins out from under the head. However, a great deal of internal set up for
the new transfer needs to be done, which strictly speaking shouldn’t be necessary, since you’re
reading sequential bytes off the disk. But the device driver can’t possibly know that you’re going
to eventually request additional bytes, and besides it can’t know where to put them until you tell
it You could post an asynchronous request in advance in the hopes that the driver is smart enough
to do an optimal operation. Unfortunately, most device drivers aren’t this clever, and there’s no
guarantee that some other task won’t get in and issue its own request in the middle of yours. Also,
there is some overhead involved in the mere act of issuing so many requests.

So in all likelihood, you’ll miss the sector and have to wait for it to spin around again. On a
CD-ROM system, rotational latency can be significant; since CDss have a spiral track, missing a
sector requires a re-seek to recover it

144 CDTV Developers Reference Manual

3.2.8 CDTV Specifics:The Power of CDXL

Enter CDXL

CDXL is the next logical step in data transfer methodology. CDXL directly supports the “single
file, multiple buffers” model outlined above. It takes advantage of the knowledge that the data you
wish to read is laid out contiguously on the storage device. Using this fact, it sets up the device for
a single large transfer, and automatically switches between your buffers as they are filled. In this
way, the maximum transfer rate off the device is achieved.

All this complexity is handled within the device driver. You prepare a description of the buffers
you want filled in the form of a linked list and submit it to the driver as a single request. CDXL
then fills your buffers in one operation:

Files Memory Blocks

Open (Seek)

Close

\

/

}
\

/

\

/

Length

Length

Length

Length

CDXL also has facilities in the form of call-back vectors to inform your application when given
buffers have been filled. For example, you may wish to know when the background screen buffer
has been filled so that you may display it You can specify a call-back vector to be invoked when the
transfer into the buffer is complete. This routine could send a signal to your application informing
it that it is now okay to display the buffer.

Beyond The Obvious

With some imagination, CDXL can be used to do more than just a one-shot load of your buffers.
Since CDXL takes a linked list of buffer descriptions, each of which can have a call-back vector,
most of these possibilities lie in the skillful manipulation of the CDXL lists.

Programming and CDTV Multimedia 145

32.8 CDTV Specifics:The Power ofCDXL

One popular example is to create a circular list describing two display buffers. When passed to the
driver, CDXL will endlessly alternate between them. If a call-back vector is set up on each CDXL
list node, a short routine can signal the application to display the newly-filled buffer. In this way,
extremely long animations may be played off the disk at the device’s maximum possible transfer
rate.

Note that CDXL imposes no restrictions on the size or shape of the display buffers; that decision
is left entirely up to you. All CDXL does is move bytes where you tell it Thus, you could have
the “traditional” 1/3 screen rectangle with a 4:3 aspect ratio, or you could have a tall overscanned
vertical strip, or a wide horizontal strip, or a really small rectangle so you can increase the frame
rate.

CDXL also allows you to manipulate the lists from within the call-back vector. From here, endless
possibilities open up with regard to title design, flexibility, and on-disk data organization. For
example, based on the contents of a standard header, you could dynamically switch the data over to
any one of several buffers.

Make It Happen

Through its sheer simplicity, CDXL offers unparalleled speed and flexibility to the CDTV developer.
In combination with existing software technologies and the power of the Amiga, CDTV presents the
multimedia developer with the fewest obstacles to title creation and offers capabilities unavailable
on any other platform.

146 CDTV Developers Reference Manual

32.9 CDTV Specifics :CDXL Toolkit

CDXL Toolkit

Overview

This package contains the first generation of CDXL tools to help you edit video/audio sequences
and write programs to play the results. The distribution disks contain:

• Eight separate tool programs.

• A standard C include file.

• An example source file.

• Example files in CDXL format.

Before using the tool programs, be certain to take the precautions stated in the next section.

The CDXL tools provided are:

XLMake
Creates or appends to a CDXL file. This tool accepts one or more IFF files (in the desired
resolution and color mode), converts them to the standard CDXL format, and joins them
together in sequence. Normally you would run this program as part of your video building
script.

XLPlay
Simulates the playback of a CDXL file with approximate CDTV timing. XLPlay provides a
simple means of viewing and hearing CDXL sequences on a standard Amiga computer as if
they were on CDTV.

XLInfo
Displays detailed information about a CDXL file. The primary purpose of this tool is to provide
size and timing information.

XUoin
Combines multiple CDXL files into a single sequence. It can also insert a CDXL sequence into
a second file at a particular point

XLCopy
Copies frames from any point in a CDXL file and transfers them to a new file.

XLTrim
Removes frames from a CDXL file. Frames can be removed from any part of the file, or a file
can be shortened overall by a specified amount

XLAudio
Inserts an audio track into a CDXL file, i.e., Sound on Rim. The audio will become an integral
part of the CDXL sequence and will be heard when you run XLPlay.

Programming and CDTV Multimedia 147

32.9 CDTV Specifics :CDXL Toolkit

XLClean
Rebuilds the frame sequence numbers and linkage information within a CD XL file. This action
is not normally required, but is sometimes useful if custom CDXL programs have been used.

Each of these tools will be described in detail shortly.

Warning—Read This
CDXL sequences can be massive. For each minute of CDXL, nine megabytes of disk space
are required. The CDXL Toolkit programs perform operations that are very read/write intensive.
Should your Amiga crash (power failure, etc.) during an important operation, your AmigaDOS
disk structures may become invalid and require reformatting.

Special precautions must be taken. It is well advised that you edit CDXL files on a separate disk
drive, or at the very least, a separate partition of your drive. This has two advantages:

Safety
If your system crashes during CDXL editing, you may lose some of your work in the
disk/partition, but the rest of your system and code will not be affected. If you keep your
application source code on the same system, this is a very important consideration.

Performance
After a few days/weeks of CDXL editing, your disk/partition will become fragmented. Such
fragmentation will introduce seek delays into your editing operations, which will cause the
tools to slow down, and may result in poor timing and glitches in the XLPlay command.

So these are good arguments for taking the time to get set up properly. Believe us, it will be worth
the effort! Partition your disk or use another disk for editing!

On our single disk systems, what we normally do is: put the standard workbench, libraries, devices,
etc., into a small (6 meg) partition; put our development tools and code into a second (40 meg)
partition; and use the rest of the disk for CDXL editing.

Commands
The CDXL Toolkit consists of a number of tools that operate as Shell (CLI) commands (they are
not useful from the Workbench). Each of the tools requires command arguments appropriate to its
function. A brief summary of the arguments can be obtained by executing the command without
any arguments.

Generally, each tool accepts both an input and an output file as arguments. The tool performs its
function by reading the input file a frame at a time, making the required changes, and then writing
to the output file. Normally, the input file is not modified (XLAudio has a special exception). This
approach helps preserve your original files from accidental modification, but at the cost of extra
disk space.

Note that the performance of the tools will vary depending on the speed of your Amiga processor
and hard disk. The primary bottleneck, however, will usually be the AmigaDOS File System—large
CDXL files may require significant time to process.

All of the tools deal with files that use a standard type of file format and header. Files that do not
contain the proper header cannot be processed. This header is described later.

148 CDTV Developers Reference Manual

32.9 CDTV Specifics :CDXL Toolkit

XLMake
XLMoke is the primary tool for creating CDXL sequences. The purpose of this tool is to accept
standard IFF files that are already in the desired resolution, color mode and depth, translate them
into a raw bitplane format, and join them together as a sequence of frames to be read with CDXL.
F.jich frame contains header information about its size, resolution, colors, and audio.

This tool is normally used in a script file or ARexx program during the capture of individual video
frames; for example, you might use it along with the Art Department Professional (from ASDG).
Each time a new frame has been captured, scaled, and color adapted, XLMake is invoked to combine
the frame to the CDXL file under construction. To help illustrate its use, a useful AREXX script
has been provided on the distribution disks.

For this tool to run you must have iffparse.library installed on your system (in LIBS:). (A copy of
it is provided on the distribution disk for those who are unfamiliar with this library).

Summary

XLMake [options] <IFFFilel> [<IFFFile2>...] <File>

The IFF files are translated and appended to the File. If the File does not exist, it will be created. If
it does exist, new frames are appended to the end.

Options

-a<n>
Allocate space for audio track. The value specified is the number of bytes to use per frame. It
is not necessary to allocate the audio during XLMake. You can always add the audio later with
XLAudio (see XLAudio for more information). This feature is included in XLMake so you can
view playback with accurate timing before your audio has been added.

-d
Forces AVM (Advanced Video Mode) and DCTV. If you are storing AVM pictures, this flag
must be set.

-f<n>
Frame sequence number (not strictly required, but handy to know). Normally you would be
assigning each frame number for every frame added, however, frame numbers are not required
and XLClean can be used to renumber files later. When multiple IFF files are specified, the
frame number is incremented automatically.

-h
Forces HAM mode (only needed for ancient Amiga programs that didn’t set the CAMG
correctly).

Example

XLMake -flO -d intro.xl

XLMake -a!024 intro2.xl

Programming and CDTV Multimedia 149

32.9 CDTV Specifics :CDXL Toolkit

XLPlay

XLPlay is a very useful program that simulates the playback of a CDXL file with approximate
CDTV timing. XLPlay provides a simple means of viewing and hearing CDXL sequences on a
standard Amiga computer as if they were on CDTV. The purpose of this tool is to allow developers
to view their CDXL files in order to make decisions and changes without remastering a CD (or
creating an emulator version).

Playback timing is only approximate. The general timing characteristics are preserved (total play
time), but the speed of AmigaDOS and the lack of CDXL on standard Amigas prevents precise
timing from being achieved.

If an audio track is present, it will be played along with the video (mono only). Slight audio
“drop-outs” will be heard due to the varying lengths of disk read times in the Amiga File System.

Summary

XLPlay [options] <File>

The specified File is played on the Amiga screen. The image will always be centered in the miHHle
of the screen.

You can stop the play before it has finished by pressing the Esc key. To pause/unpause press the
Space bar.

Options

-h
Force hi-res graphics mode (not normally required).

-i
Force interlace graphics mode (not normally required)

-r<n>
Repeat playback a number of times. This is helpful for short sequences that would be difficult
to see.

-q
Quiet (mute the audio).

-s[<n>]
Show frame sequence numbers during playback. Handy if you need to know where to cut and
edit The optional numeric value indicates the “brightness” of the frame number display. It
may range from 0 to IS, where 0 is black and IS is white.

Example

XLPlay -r4 -s intro.xl

150 CDTV Developers Reference Manual

32.9 CDTV Specifics :CDXL Toolkit

XLInfo

XUnfo displays detailed information about a CD XL file. The primary purpose of this tool is to
provide accurate timing and other information for application developers.

This tool will calculate and display the total play time, number of frames, frame sizes, frame
resolutions, number of colors, color modes, audio track size, audio period estimate, sequencing
information, and out of sequence frame numbers.

Normally only the first frame's header is examined, and an estimate is calculated from its size and
the total file size. This is done to save time. To check the entire file, use the -w option.

Summary

XLInfo [options] <File>

CDXL file information and statistics will be displayed for the specified Hie.

Options

-a[<n>]
Estimate audio sizes. This will produce an table of what various audio track sizes would
produce in terms of timing, playback period, total audio size, etc. If the optional value is
provided, it will be interpreted as the number of bytes per frame for audio, and its relevant
information will be shown.

-f<n>
Hrst frame to examine,

-l<n>
Last frame to examine

The above two options use the ranges to examine only a section of a XL file. Information and
statistics will only pertain to this section.

-w
Examine the whole file. Normally XUnfo just looks at the first frame and estimates the rest. If
you have a mixture of frame sizes or wish to analyze the entire file, use this option.

Example

XLInfo -w intro.xl

XUoln

hi Join combines multiple CDXL files into a single file. The purpose of this tool is to provide a
means of splicing together separate video scenes to create a single CDXL video file.

XUoin also allows the insertion of CDXL files anywhere within a CDXL file. This tool does not
alter its input files in any way, thus preserving them for use in other video sequences.

Summary

XL Join [options] <FileInl> [<FileIn2>...] <FileOut>

Each of the input files will be appended (in the specified order) and written to the output file. Frames
in the output file will have new sequence numbers.

Programming and CDTV Multimedia 151

32.9 CDTV Specifics :CDXL Toolkit

Options

-i<n>
Insert into the first file at given frame. Normally XUoin just combines a list of XL files into one
XL file. This option allows you to “splice” the other files into the first input file (still producing
the “out” file). This is useful when you wish to add an XL file into another “master” XL file.

Example

XLJoin intro.xl action.xl end.xl all.xl

XLCopy

XLCopy copies frames from any point in a CDXL file and transfers them to a new file. The purpose
of this tool is to provide a simple means of extracting useful video sequences without altering the
original file. This approach is easier and safer than XLTrim in some situations.

Summary

XLCopy [options] <FileIn> <FileOut>

The specified portion of the input file will be copied to the output file. Frames in the output file will
have new sequence numbers.

Options

-f<n>
First frame to copy (inclusive). May be specified alone or in conjunction with the -1 or -n
options. When specified alone (without an end frame or length), frames through the end of the
file are copied.

-l<n>

Last frame to copy (inclusive). May be specified alone or in conjunction with the -f or -n
options. When specified alone (without a start frame or length), frames from the start of the
file are copied. Using -n for a frame count will copy that many frames up to and including the
last frame specified.

-n<n>
Number of frames to copy. This can be used with -f or -1 but never with both.

Example

XLCopy -flO -nlOO intro.xl newintro.xl

XLTrim

XLTrim supplies a simple set of editing functions for removing selected frames from CDXL files.
It is useful for removing unwanted video or reducing the play time to some maximum value.

Options are provided to: trim video frames from the beginning, middle, or end; remove every Nth
frame; and trim the entire file down to a specified number of frames or playback time.

This program also has the capability of removing the audio track from a CDXL file.

Summary

152 CDTV Developers Reference Manual

32.9 CDTV Specifics :CDXL Toolkit

XLTrim [options] <FileIn> <FileOut>

The specified portion of the input file will be copied to the output file. Frames in the output file will
have new sequence numbers.

Options

Options that specify frame numbers are inclusive.

•a
Remove the audio track. Actually removes the track and frees that space from each frame.

-b<n>
Remove from beginning to this frame.

-d<n>
Delete every <n>th frame.

-e<n>
Remove from the end back this number of frames. This option assumes that the file contains
equal sized frames.

-f<n>
First frame to start removing.

-l<n>
Last frame to remove.

-n<n>
Number of frames to remove.

-m<n>
Maximum number of frames desired for entire file. Frames will be removed at evenly spaced
intervals throughout the file in order to cut the file to this size. This option assumes that the file
contains equal sized frames.

-t<n>
Maximum play time in seconds. Frames will be removed at evenly spaced intervals throughout
the file in order to cut the file to this size. This option assumes that the file contains equal sized
frames.

Example

XLTrim -flO -nlO intro.xl short.xl
(removes frames 10-19)

XLTrim -m60 intro.xl intro60.xl
(removes frames to make result 60 seconds)

XLTrim -e5 intro.xl introcut.xl
(removes the last 5 frames)

Programming and CDTV Multimedia 153

3.2.9 CDTV Specifics :CDXL Toolkit

XLAudlo

XLAudio adds an audio sound track to an existing CDXL file. This operation is normally done as
the last step in creating a CDXL audio/video sequence. The audio must already be adjusted to the
correct sampling rate before laying down the track (see discussion below).

The tool will allocate the audio track for each CDXL frame if necessary, or overwrite the track if
one already exists.

Only mono sound tracks are supported by this tool.

For this tool to run you must have iffpcurse.library installed on your system (in LIBS:). (The
distribution disk has a copy of library for those who are unfamiliar with it).

Summary

XLAudio [options] <IFFSoundFile> <FileIn> [<FileOut>]

The IFF File is a sound file in either normal or compressed formats. Fileln holds the video sequence
and may or may not already have an audio track. The output file contains both audio and video.

All frames in the input file must be of the same size.

Options

-a<n>
Allocate space for audio track. The value specified is the number of bytes to use per frame.
See the discussion below to determine the correct size. Also, the XU rtfo -a option will print a
table of possible values to consider using.

•

-l

Insert audio into existing track. This action operates on the input file and no output file is
required. The frames in the input file must already have space allocated for the audio track
(from XLMake or a previous XLAudio). This option is useful when the XL file is extremely
large.

-e
Ignore audio size errors when inserting. When inserting audio with the -i option, XLAudio
assumes that the audio track will remain the same size. When it does not, XLAudio complains
unless this option is set

"P

Preserve audio compression. The IFF sound file is copied with its compression intact

Example

XLAudio -al288 audio.iff video.xl final.xl

XLClean

XLCleon rebuilds the frame sequence numbers and linkage information within a CDXL file. This
action is not normally required, but is sometimes useful if custom CDXL programs have been used.

Summary

XLClean <FileIn> <FileOut>

154 CDTV Developers Reference Manual

32.9 CDTV Specifics :CDXL Toolkit

The input file is cleaned up and written to the output file.

Example

XLClean grab.xl video.xl

Creating Video

To a large extent, the techniques you use for creating video will depend on the equipment you
have at your disposal. A wide range of possibilities exist depending on your budget, ingenuity, and
patience.

Of course the simplest solution is to directly generate the video graphics on your Amiga by using
your favorite 2D painting or 3D modeling/rendering program. The only requirement is that the
program be capable of producing displayable IFF files as output Each frame would be stored as a
separate file (on hard disk or in RAM disk), and input to XLMake as needed.

Another approach might be to use a video frame digitizer that can be operated either manually or
automatically (from ARexx or ADPRO). The images from this digitizer could be processed and
altered with ADPRO then saved as an IFF file and again entered as input to XLMake.

An simple ARexx script to do this might be:

/* CDXL ADPRO program for PPS Framegrabber: */

OPTIONS RESULTS
ADDRESS "ADPro"
LFORMAT "FRAMEGRABBER"
SFORMAT "IFF"
GETNUMBER '"How many frames?"'

if RC 0 then exit

FRAMES = ADPRO_RESULT

DO I a 1 to FRAMES
ADDRESS "ADPro"
OKAY2 '"Ready to grab?"'

if RC = 0 then exit
LOAD "XXX"
SCREENJTYPE 0
ABS_SCALE 160 100
EXECUTE

SAVE "RAMsTempFrame" "SCREEN"
ADPRO_DISP LAY
PAUSE 100
ADPROJJNDISPLAY

ADDRESS Command
XLMAKE "RAMsTempFrame" FILENAME

END

Programming and CDTV Multimedia 155

32.9 CDTV Specifics :CDXL Toolkit

Adding Audio

Suppose want to make a short video clip....

• 60 sec Total Run Time

• 14 K/sec audio quality (approx)

• 12168 bytes/frame (from XLInfo)

First determine what you know for sure.

Total Size:

60 sec * 150 K/sec * 1024 bytes/K = 9216000 bytes

Total Audio Size:

60 sec * 14092 bytes/sec = 845520 bytes

Calculate basic figures.

CDXL less audio:

9216000 - 845520 = 8370480 bytes

Number of frames:

8370480 bytes /12168 bytes/frame = 688 frames

Finally, calculate:

Audio sample size per frame:

845520 bytes / 688 frames = 1228 bytes / frame

Now you can proceed as follows:

Use XLTrim to cut your grab down to 688 frames:

XLTrim -m688 video.grab video.688

With a program MkcAudition4, resample your audio to 14K:

Resample to 14092 bytes/sec

Save file as audio.14092

Finally, merge the video and audio data into a single file:

XLAudio -al228 audio.14092 video.688 final.xl

Now, see how it looks and sounds:

XLPlay final.xl

Keep in mind that there may be a few small timing errors when playing this on an Amiga. Normally
you won’t see these, but you may hear them. Unfortunately, the only way to be absolutely sure is

to test with the emulator using your application program.

156 CDTV Developers Reference Manual

32.9 CDTV Specifics:CDXL Toolkit

Custom Programs

Within an application you will need code to play the CDXL sequences that you have created
You may also want to create special tools for manipulating CDXL sequences during the authoring
process. To do this, you must understand the structure of a CDXL file and the philosophy behind it

Standard CDXL files are made up of one or more frames. The general format of a frame is:

When a file contains more than one frame, the frames are simply concatenated, header and all
Pat .is, one frame follows immediately after another. The only restriction is that frames must
be aligned on even byte (word aligned) boundaries.

Various portions of a frame are optional. Actually, the only required section is the PAN Header
which contains information about the frame. The Color Map, Video Data, and Audio Data may or
may not exist 3

The PAN Structure is key to your access of CDXL files. It is defined in the file pan.h.

struct PanFrame
{
UBYTE Type;
UBYTE Info;
ULONG Size;
ULONG Back;
ULONG Frame;
UWORD XSize;
UWORD YSize;
UBYTE Reserved;
UBYTE PixelSize;
UWORD ColorMapSize,
UWORD AudioSize;
UBYTE
};

PadBytes[8];

/* type of structure being read */
/* variations of type */
/* total size of frame */
/* offset from beginning of last frame */
/* frame sequence number */
/* width of video in pixels */
/* height of video in lines */
/* Hands off! MUST BE ZERO */
/* depth of pixel */
/* # of bytes in color map */
/* size of audio sample */
/* Hands off! MUST BE ZERO */

Type

2S what ^ of structurc y°“ are reading. Currently this field must be set to
FAN-STANDARD.

Info

This field indicates variations on the general Type. Various options are discussed below.

Size

This is die total size of the frame in bytes. It includes the entire PanFrame structure, color
map, video, and audio. With this value, you can skip to the next frame.

Back

Thisis the offset from the start of this frame back to the beginning of the previous frame. While
CDXL cannot play backwards, this field is useful for tools.

Frame

TTiis number uniquely identifies the frame within a file. A zero value indicates that the number
is undefined, and tools print out a “??????” in the number field to show this.

XSize

The width of the video in pixels.

YSize

The height of the video in lines.

Programming and CDTV Multimedia 157

32.9 CDTV Specifics :CDXL Toolkit

Reserved
Reserved for future. Currently, must be zero!

RxC!(5j“ depth” of a pixel. That is, the number of bits used to indicate a color (with or without a
color map). A zero value indicates that no video data exists within the frame. Example values.

4 for 16 color, 6 for HAM, 24 for RGB24, etc.

C0,°m tS" ^ of 1* color map in bytes. If yoo najoim more than 64K of tor map to yo»

shouldn’t be using CDXL (but you can use your own custom CDXL fcwWffj. A ze
value indicates no color map. Topical values are 32 for 16 colors, 64 for 32 colors, 64 for

half-bright (64 color) mode, 32 for HAM.

AUdTotaTsize of the audio sample area in bytes. A zero indicates no audio is present Total size

must include all channels (when multiple audio channels are used).

PadBytes[8]
This area is reserved for future use. For now it must always be set to zero.

The PAN Structure is optionally followed by the Color Map, Video data, and Audio data. Each of

these areas must be even byte (16 bit word) aligned.

The TVpe field defined above is set to indicate the type of header structure being used. Over time
CDXL will evolve and this type will be critical for identifying what type of frame we are about to

process. Right now the valid possibilities for this field are:

PANuSdArohitoe that the frame is in a standard foimat and that the above structure is used.

PANprovid2for you to create your own formats, but without causing problems for general tools.
Custom formats allow you to lay your data however you need it. The only requirement is that

the file start with the structure PanHead

struct PanHead
{
UBYTE Type;
UBYTE Info;
ULONG Size;
};

Type
Set to PAN-CUSTOM to identify this as nonstandard.

Info
Reserved. Set to zero.

Size
This is the total size of the custom frame in bytes, including this structure. It is used to jump

from the beginning of this frame to the beginning of the next frame.

158 CDTV Developers Reference Manual

3.2.9 CDTV Specifics :CDXL Toolkit

Notes on The PAN Structure Fields—Type and Info
Type

PAN_SPECIAL

Reserved for experimental and proposed formats.

All other values for the Type field are reserved for new frame structures. As CDXL evolves
new PAN types will be published.

Info

In the PanFrame structure, the Info field describes various formats for the data contained
within the frame.

PIV_MASK

Defines a bit field that tells you what video decoding should be used to display the image
Choices are:

PIV_STANDARD
For normal encoding (Amiga, RGB).

PIVJHAM

For hold and modify encoding.

piv_yuv

For luma-chroma encoding (e.g., 844 bit YUV).

PrV—AVM
For CDTV advanced video mode and DCTV.

Commodore will add new values to this as needed. Pixel value orientation is not specified here. It
is defined in a separate bit field, PIF_MASK, that indicates the orientation format:

PIF-PLANES

Data is interleaved on a bitplane basis, e.g., in the normal Amiga bitplane style. Each
plane contains one bit of the pixel value.

PIF_PIXELS

Data is interleaved on per pixel basis, e.g., the chunky style like that used for VGA data,
8 bits per pixel, 24 bits per pixel, whatever.

PIF_LINES

Data is interleaved on a line basis. This can be thought of as each line being a single
bitplane to itself.

Another field, PIA_MASK, indicates audio options. It tells you whether the audio is mono or
stereo.

A few size macros are provided to help you move through a file. These should be used as needed.

Programming and CDTV Multimedia 159

32.10 CDTV Specifics :CDXL Toolkit and Video Capture for CDTV

('

CDXL Toolkit and Video Capture for
CDTV

The CDXL Toolkit is now available to licensed CDTV developers. It provides an easy software
solution to produce XL “video streams”, files that contain video and audio sequences for display on
CDTV systems.

Of course, the XL Toolkit is only the software end of the video production chain. It is designed
to work in conjunction with video playback equipment, a framegrabber, and some extra software
necessary for scaling and color balancing of images.

This paper discusses briefly the process, equipment, and software necessary to create a “video
stream” for CDTV.

Real-time video capture

As described in the article in Appendix A, “Using ARexx And Videodiscs To Generate CDXL
Files”, to date there is no easy solution to transferring video sequences from tape to an XL stream
on a hard disk. Ideally, you could capture video in real-time, direct to disk.

“Real-time video capture” systems are starting to ship on PC platforms, and have been advertised
on the Macintosh®. Fluent Machines Inc. is shipping a single-slot AT-compatible board which
performs real-time compression and decompression of full-motion digital video and audio data
streams on a 386-based PC compatible. Their board, based on the ISO JPEG standard, is currently
shipping, and costs $3995 for the board plus $995 for the developer software kit For more
information, contact Date Backer, Fluent Machines, (508)626-2144.

However, such systems are not currently available for Amigas. The price tag may also discourage
potential CDXL authors. Thankfully, alternatives do exist

Frame-by-Frame capture

Authors are currently producing CDXL streams by grabbing video one frame at a time, resizing
the image, adjusting the palette, then using the CDXL toolkit to save the frame to an XL stream on
disk. In order to digitize frame-by-frame, you need a video playback device capable of advancing
across the video source frame by frame, and freezing the current frame, with minimal jitter, long
enough to grab the frame, all under computer control.

We have tried video tape recorders, Hi-8 camcorders, and laser discs. We find the laser disc solution
to be the most satisfying. See the discussion below for the advantages and inconvenience of each
method.

ARexx scripts are used to control the entire video capture process. A sample ARexx script is
attached.

Programming and CDTV Multimedia 161

32.10 CDTV Specifics :CDXL Toolkit and Video Capture for CDTV

Computer hardware

The basic computer hardware required to develop video streams is an Amiga 2500 or A3000,
with minimum 3 Mbytes of RAM. A 68030-based system is required to obtain reasonable image
processing speed.

A large SCSI hard disk is also necessary. It is suggested that the hard disk contain at least 2
partitions. The XL Toolkit reads and writes intensively to disk. It is strongly advised to avoid
keeping source code or data on the same disk used for grabbing frames and creating XL streams.

Video Capture Hardware

A framegrabber is the essential requirement to enable video capture. The key feature is the ability
to grab a frame in the highest possible resolution. Image processing software can be used later to
drop down to the number of bitplanes required, and to scale the image down to 1/4 screen, if that is
the target resolution. Use the highest possible number of colors when capturing the image to obtain
optimal quality on your final frame.

If your video source is sufficiently stable, you may use slow-scan digitizers (such as DigiView) to
grab the frames.

For the moment we have tested the following video capture devices:

Framegrabber, by Progressive Peripherals.

This framegrabber digitizes very rapidly; it is supported directly by The Art Department
Professional. However, the image quality is only satisfactory—it does not grab in 24-bit mode.
Progressive Peripherals ships this board in both NTSC and PAL flavors.

DCTV, by Digital Creations.

This system, recently introduced in PAL as well as NTSC, provides excellent quality images,
using a minimal number of bitplanes. However, playback requires a CDTV equipped with the
Advanced Video Board, or a DCTV module plugged into the back.

The following video capture boards, though not tested by the Commodore Special Projects group
specifically for the purpose of CDXL video capture, should also work well:

Video Toaster, by NewTek.
This infamous board can be used for framegrabbing, although it is a bit slow for CDXL
purposes. It saves in its own framestore format, which must be loaded into the Toaster's
software, then saved to disk as a 24-bit IFF image. Image quality is excellent NTSC-only,
however.

Impact Vision 24, by Great Valley Products.
GVP’s board works in 24 bits, in PAL or NTSC, but the video source must be RGB (not
composite). An optional “RGB splitter” is required to grab incoming composite or S-VHS
video.

In general, any framegrabber should work correctly. If possible, the software for the framegrabber
should have an ARexx port, to enable automation of the grabbing process by an ARexx script

162 CDTV Developers Reference Manual

32.10 CDTV Specifics :CDXL Toolkit and Video Capture for CDTV

Laser Disc Player

To date, the easiest way to capture frame by frame has been to press a videodisc of the source
material. Videodiscs provide good video quality, maintain that quality even when displaying single

frames, and are easily controlled via a computer. In the United States, a 30-minute videodisc can

be pressed over a 5-day turn for about $400. (The shorter the turn, the higher the cost)

Playing back the videodisc with computer control can be performed by a number of players. Here

is a list of the players supported by AmigaVision and by “Videodisc”, an ARexx control program

for video devices:

Phillips 405

Phillips 410

Phillips 835

Pioneer 2200

Pioneer 4200

Pioneer 6000

Pioneer 6010

Sony 1200

Sony 1500

Sony 1550

Sony 2000

Video Tape Recorders

A good quality video tape deck (like the Sony Umatic series) is usually equipped with an interface

for computer control. The Videodisc utility can control a Sony UMatic deck. Again, the cost of

such systems eliminates them as an alternative for many developers.

Hi-8 Camcorders are generally less expensive than Umatic equipment. It is possible to control

a Hi-8 camcorder equipped with an infrared control system, via the Illumilink 2.0 package from

Geodesic Publications. ((404)822-0566) This $100 system lets an ARexx script on your Amiga

control your Hi-8 Camcorder via its infrared receiver. Your script can advance to the next frame,

pause the Hi-8 camcorder, grab the frame, and continue.

Watch Your Pause! Intensive use of the pause function on a Hi-8 camera may well

damage the motor on the camcorder!

Image Processing Software

The Videodisc utility is an ARexx control system for video devices designed to work specifically
with CDXL video capture systems. It is available from CATS. Videodisc lets ARexx scripts control

video devices supported by the Amiga playendevice. It represents a key part of the ARexx script

used to create an XL video stream. Videodisc is described in Appendix B.

The Art Department Professional from ASDG Inc. is the second essential piece of software.

ADPro includes numerous functions, all controllable via an ARexx script, to control framegrabbers,

translate images from 24-bits to HAM, adjust to a particular palette, resize images, etc.

Programming and CDTV Multimedia 163

32.10 CDTV Specifics :CDXL Toolkit and Video Capture for CDTV

Audio Capture System

For CDXL streams, the audio sampling rate is usually fairly low (in the 8 to 15 Khz range) to
maintain the highest possible number of video frames per second. Numerous 8-bit audio digitizers
are available for the Amiga. We have used both Perfect Sound, SoundMaster, and AMAS. Audio
Master III has been used to manipulate the digitized sounds.

A sample AREXX script from Videodisc vers. .12

/* Grab.rexx */
/* This demonstrates how to automatically build a CDXL file. */

/* The boss says "I wanna see RESULTS!" */
options results

/* Send commands to Art Department Professional */
address "ADPro"

/* We want to load frames from the FrameGrabber */
LFORMAT "FRAMEGRABBER"

/* We want normal IFF output files */
SFORMAT "IFF"

/* Search for the first frame of my scene */
address VIDEODISC.1 search 14173

/* We'll grab 1200 frames worth */
do frame = 1 to 1200

address "ADPro"
/* Grab the video */
load "it" "FIELD1"

/* I'm grabbing a letterboxed image, so I can throw some */
/* of it away */
OPERATOR "CROP IMAGE" 280 120 20 40
/* Shrink the Image to the destination size */
ABS_SCALE 192 82
/* Generate the HAM image */
EXECUTE

/* Save it where XLMake can get at it */
SAVE "RAM:Temp" "IMAGE"
/* Some commands for COMMAND */
ADDRESS COMMAND

/* Keep the user informed */
say "Saving frame #" frame
/* Append the frame we just saved onto the end of our CDXL file */
XLMAKE "-h" "RAMsTemp" "SDHOsbladerunner.xl"

/* I know I'm going to have 15 frames / second or less, */
/* so it's OK to only grab every other frame */
address videodisc.1 step 2

/* Keep doin' it 'til it's done. */
end

164 CDTV Developers Reference Manual

32.10 CDTV Specifics :CDXL Toolkit and Video Capture for CDTV

Appendix A—Using ARexx And Videodiscs To Generate
CDXL Files

Introduction

One of the most difficult parts of using CDXL to display motion video has been the process of
building a suitable CDXL file. There is currendy no straightforward way to simply record video
and audio material in real time directly into a CDXL file. In fact, there is currendy no way (in
real-time) to record video and audio into any type of file. Acquisition of the video material can be a
tedious process where constant (and perhaps cosdy) human intervention can be required to advance

the video material to the next frame.

While the new CDXL toolkit provides examples of how to use ARexx to automate most of the
CDXL build process, the critical issue of controlling an external video device is not covered.

This article demonstrates the production of an actual CDXL file, and, in the process, demonstrates
a new tool that can be used to speed up and automate the critical "next frame step. TheArr
Department Professional, ADPRO is used throughout.

In an ideal world, making a CDXL file would simply be a matter of plugging your video player into
the CDXL board, commanding the CDXL board to record the incoming video and audio to a CDXL
file on disk, and pressing play on the video deck. Unfortunately, it’s not that simple yet Audio is
easy; the video part is not so easy. For now, the best we can do is to grab a frame at a time.

Regrettably, single frame grabbing from video presents its own set of troubles. Most video is on
videotape, but most video tape decks don’t play single frames very well, and, of those that do, very
few can be controlled by a computer. This leaves videodisc. Videodiscs have three advantages
over videotape for creating CDXL files. First, they have exceptionally high video quality. Second,
they can maintain that high quality even when displaying single frames. Third, it is relatively easy
(especially now) to control videodisc players with computers.

This said, videodiscs do have one particular disadvantage-they generally cannot be recorded onto.
Until recently, making a laser videodisc of a piece of video was relatively expensive, and took
quite a while. Now, however, there are several companies that will make videodiscs for you at a
reasonable cost. For $400 (at most) and a five day wait, you can have your thirty minutes of video
turned into a top-quality videodisc, ready for the next step in building a CDXL sequence.

Step-by-step

1—Gather video

Think about the places in your application that could benefit from motion video sequences. All

of these scenes will need to be produced using normal video production techniques. Obviously,

certain video elements do not lend themselves to CDXL presentation—things like overlaid text,

low contrast dark images, or anything where having low resolution would prohibit the viewer from

seeing important details.

Programming and CDTV Multimedia 165

32.10 CDTV Specifics :CDXL Toolkit and Video Capture for CDTV

2— Edit video

There are probably a lot of different scenes that you’d like to include in your finished application.
Because videodiscs hold thirty minutes of information, and because the per-disc cost is the same
no matter how much time is used, it is best to get as much video onto each disc as possible. If
you have less than thirty minutes of video, consider filling out the time with video from some other
project, or with outtakes—just in case. It’s also important that your finished, edited tape meets the
requirements of the mastering house that you choose. Most houses will want so many seconds of
black, so many seconds of color bars, etc. Some may want the tape to have a continuous time code.
Not having the tape set up the way the house wants it may mean paying a special “processing fee.”

3— Mall It away

Relax and enjoy the five day wait

4— The nitty gritty—Building the video portion of your CDXL files

It will be easier to follow this step if it’s broken into substeps.

First find the frame numbers of the beginning and end of your scene. Call them BEGIN and END.

Next determine how long the scene should be in real time by computing (BEGIN-END)/30. Call
that number SECONDS.

Make sure that, when played (by pressing play on the disc player) the scene really is that long.
(Don’t laugh, if the disc was made from a film master, it may have 24 frame per second frame
markers, which would cause the player to step through and search the video at 24 fps, even though
it properly plays back at 30 fps. Making the wrong assumption here can lead to big timing problems
later.)

Start ADPro and try grabbing a few frames of video. You’ll want to try out a few, to get the color,
contrast, and other settings just right. At this point, you should choose a palette for the scene. If
you plan to put the CDXL image onto an existing screen, you’ll want to load in that screen’s palette.
Once you got the palette you want, lock it.

Next, using ADPro, crop the picture down to the size that you want, and save the resulting image.

Now, use XLMake to build a one frame XL file that includes just the frame that you saved from
ADPro.

Run XLinfo on that frame, and proceed with the calculations listed in the “Adding Audio” section
of the “CDXL Tookit” article.

At this point, you’ll probably need to adjust the frame size of your images, in order to get the balance
of frame-rate, image size, and audio quality that you want. Keep these two caveats concerning
audio in mind.

• First, the Amiga has certain “natural” sampling and playback rates, which are based on the
“period” value passed to the audio.device. Playing back samples at speeds other than the
“naturals” is non-trivial. Most sampling software will not even let you sample at rates other
than these “naturals.” Unfortunately, XLinfo will calculate and report lots of in-between values
for "Audio bytes/second.”

166 CDTV Developers Reference Manual

32.10 CDTV Specifics :CDXL Toolkit and Video Capture for CDTV

• Second, while you may pass XUnfo an odd value for “audio bytes per frame,” XLAudio will
only process an even number of bytes per frame.

The upshot of these two caveats is that you should try to get a balance of image size and frame rate
that lets you have both an even number of audio bytes per frame and a “natural” value for audio
bytes per second.

Now, using the sample script grab.rx as an example, build an ARexx script that steps through
the video, grabs frames, processes them, and builds a CDXL file. If you know that the video is
going to be running at 15 fps or less (12 fps for a film-sourced disc), then only grab every other
frame. Grab.rx assumes the use of a FrameGrabber, but anything that can grab from videodisc
will woik. Since the videodisc image is a perfect still, you can even use slow-scan digitizers like
DCTV, DigiView (with an electronic splitter), or Deluxe View.

5— Start ’er up and let ’ergo.

There are a lot of variables which will affect the amount of time it takes to process one frame. Based
on these variables, it can take anywhere from six to twenty seconds per frame to build a CDXL file.
It can take quite a while. Of course, it’s a lot faster than ray-tracing, so it’s worth it

6— Try It out.

At this point you’ll probably be anxious to see the video part of your CDXL file. Just use XLPlay.
One interesting note that may or may not have been fixed by die time you read this—If you run
XLPlay while ADPro is running, your image may be way off the right-hand side of the screen. Go
figure!? Just quit ADPro and try again.

7— Adding audio.

Once the video is in the form of a CDXL file, adding audio is simply a matter of following the
instructions listed in the “Adding Audio” section of the “CDXL Tookit” article. Again, keep the
two “audio caveats” discussed earlier in mind when adding the audio.

Note that when you press play on most videodisc players, the audio begins immediately. This makes
it easy to get the audio start sync’ed. Just use videodisc to search to the first frame of your scene,
start your sampler, and press play on the player. (Of course you could also send the player a PLAY
command.) Let the sampler record a little beyond the end of the scene, in case you need the slop.
Remember that XLAudio will only use as much audio as it can fit into your CDXL file, so letting
the audio file be a little longer than necessary can’t hurt When you’ve stopped the sampling, use
the editing features of your sampling software to chop off the zeroes at the beginning of the sample,
and you’ll then have a sample that starts at exactly the first frame of your segment.

Also note that the XLAudio step can take a while. When XLAudio is working, it reads from two files
and writes to a third. To minimize disk thrashing, consider putting the audio sample file in RAM:
for this step. More importantly, it is highly recommended that you have the source and destination
CDXL files on two different partitions (or drives.) That way, if something should go wrong while
adding the audio, the original CDXL file (which probably took a long time to build) should still be
intact

Programming and CDTV Multimedia 167

32.10 CDTV Specifics :CDXL Toolkit and Video Capture for CDTV

8—That’s all folks.

You should now have a finished CDXL file that can be played with XLPlay. You’ll need your own
code (which you can model after the example.c source in the CDXL toolkit) to actually play the
CDXL file from within a CDTV application, but XLPlay will at least let you check that the finished
file is ok. When playing with XLPlay, you may notice some audio timing errors. These should go
away when playing from a CD (or the emulator.)

Conclusion

CDXL sets us apart. Use it Use it well.

DRAW (Direct Read After Write) Videodisc Vendors

Technidisc, Inc.
2250 Meijer Drive
Troy, MI 48084-7111
313-435-7430
800-321-9610
fax: 313-435-8540

"SuperDisc - Exhibit Quality DRAWDISC"

Turnaround 1 Side CAV only Max. Quantity
5 day US$400 3*
3 day $600 2*
1 day $7501
Same day $1000 1
♦additional copies $250

Optical Disc Corporation
(800)350-3500
(213)946-3050

Certified recording centers nationwide

RLV Disc service US$300

168 CDTV Developers Reference Manual

32.10 CDTV Specifics :CDXL Toolkit and Video Capture for CDTV

Appendix B—Videodisc
A means of controlling videodisc equipment via ARexx

Introduction

The Videodisc program was designed to let ARexx scripts (and applications capable of sending
ARexx messages) control any of the video devices supported by the Amiga playerdevice.

Player.device is an Amiga shared device that provides mid-level support for the playback of au¬
dio/visual materials from supported video disc players and video tape decks. It commonly distributed
with the AmigaVisiori™ authoring system.

When run, Videodisc opens an ARexx port, accepts straight-forward English commands, and
translates them into the necessary Playerdevice commands.

Videodisc does not reply to your script or application until after it has completed an op eration. For
example, if told to play from frame 1 to frame 100, (using one command) your ARexx script won’t
continue until frame 100 has been reached. This prevents search latency from affecting the timing
of a script or application.

Setup

Playerdevice should be in your DEVS: directory. This file is the actual shared device that accepts
commands and sends them to another smaller program that is specific to each player. The file is
included in the devs directory of the Videodisc distribution disk. It’s also in the devs directory of
the AmigaVision Boot Disk.

The directory players, and all the files in it, should be in your DEVS: directory. These files are
the individual programs that accept mid-level commands from playerdevice, and convert them to
player-specific commands to be sent out the designated port Some video devices need different
code for different baud rates, so there may be more than one file for a particular player.

The file it player-units should be in your DEVS: directory. When playerdevice initializes, this file
is read to determine which type of player should be used, which serial device should be used, which
port number, and the baud rate to be used. See below for a sample it player-units file. You configure
this file to let playerdevice know what you’re using.

Operation

You start Videodisc by simply RUNning it from a CLI or shell. Videodisc will display an ARexx
port name (usually VIDEODISC. 1) and send an INITIALIZE command to the current video device.

When you wish to terminate Videodisc, send it a QUIT command. This can be accom plished from
the command line by typing:

RX "address videodisc.1 quit"

Programming and CDTV Multimedia 169

32.10 CDTV Specifics :CDXL Toolkit and Video Capture for CDTV

ARexx Command Set

You send Videodisc commands by addressing the port named when Videodisc is run. Usually this
will be "videodisc. 1" If it’s not, it means there is another copy of Videodisc running. Having two
(or more) copies of Videodisc running at the same time does not provide any benefits. (You cannot,
for example, drive two players simultaneously this way.)

The basic commands are listed below. Items in brackets are optional, items in parentheses are
defaults, and items separated by slashes are mutually exclusive. Capitalized words are actual
commands or keywords, lower case words describe arguments.

VIDEO [(ON) / OFF]

INDEX [CHAPTER / (FRAME)) [(ON) / OFF]

CX [(ON) / OFF]

STILL [frame number / (current frame)]

SEARCH [CHAPTER / FRAME] [number / (0)]

STEP [(FORWARD) / REVERSE] [number of frames / (1)]

WAITFOR [CHAPTER / (FRAME)] number

PLAY [SLOW / (NORMAL) / FAST] [(FORWARD) / REVERSE]...
[FROM [(FRAME) / CHAPTER] number]...
[UNTIL [(TIME) / CHAPTER] number]

INITIALIZE

RESET

IDLE

QUIT

The valid ranges for standard arguments are as follows.

Frame numbers = 1-54000
Most players will go to the last frame on a disc if told to search to 54000, some will return an
error, others will go to frame 1. Most players will go to frame 1 if told to go to frame 0, others
will return an error, some do both.

chapter numbers = 0-99
Most players will go to the last chapter if told to search to 99, some will return an error.

Known Bugs

• Gets a lock on shell (shell window can’t be closed).

• Cannot be stopped if a Videodisc command fails.

• Fixed parsing order on PLAY command.

Revision History
91.11.14 Version .12
91.11.04 Version.il
91.10.15 Version .1

Removed debugging info
Added WAITFOR command
First (sort of) working version.

170 CDTV Developers Reference Manual

32.10 CDTV Specifics :CDXL Toolkit and Video Capture for CDTV

Layout of devs:player-units file

The player-units file is a plain ASCII text file that is loaded and parsed when it player.device starts
up. It is up to you to make sure that the file is properly configured for your setup.

Here’s a sample file:

0 Sony_1200_9600 9600 serial.device 3

And an explanation of each field:

0
The "device number"—it will always be zero.

Sony-1200-9600
The filename of the “player file” that is to be used, in this case Sony-1200-9600. Note that you
should not include the path, as these files must be in devs:players. Also note that some players
have different files for different baud rates. Always use a file that is greater than or equal to the
actual baud rate that you plan to use.

9600
Next comes the actual baud rate that the player is configured for, in this case, "9600". Note
that most players have DIP switches which allow you to change the baud rate, but some have
a fixed rate while others have an electronic menu that allows the rate to be changed.

serial.device
The name of a shared device that is to be used when communicating with the player. This
should usually be serial.device. Do not give a path, as the file should be in devs:.

3
The unit number that is to be used with the seriaidevice (or whatever other device is being
used.) This will usually be “0” as that is the unit number for the default port In the sample, it
is set to “3” because of using an A2232 multi-serial port board, and that’s the unit number of
the player.

These arguments must be in the stated order, separated by spaces, and the line should be terminated
with a \n. (Or a press of the return key if you’re editing it by hand.)

Programming and CDTV Multimedia 171

32.11 CDTV Specifics .License Material Overview

License Material Overview

CDTV developers are requested to sign a CDTV license agreement This agreement gives you the
rights subject to the terms of the agreement to do the following things in exchange for the royalty
you pay to Commodore:

• Use the CDTV multimedia logo on your product and its advertising.

• Use the Mastering Software to create your master ISO 9660 image.

• Receive special materials available only to licensed CDTV developers.

What Does Commodore Do With The License Fees?

Commodore has introduced this licensing in order to ensure that CDTV discs can be easily identified
as such by the consumer, offer uniformity in key user areas, and are of a high standard of quality
and reliability. The revenue generated by the program will assist in CDTV system improvements
including cost reduction, earlier licensing of the technology, and funding of additional development
tools which will be made available to licensees.

How Are These Materials Obtained?

The entire set of licensed materials is sent to developers after Commodore has received a signed
license agreement

What Is Included In The Licensed Materials?

Commodore is regularly adding to the list of tools and materials available to licensed CDTV
developers. The most recent addition was the CDXL Toolkit. We expect to make more utilities
available in the future.

Here follows a list briefly describing the materials available to licensed developers.

CDXL Documentation

The CDXL documentation is a detailed description of the patent pending CDXL technology. This
document provides background information on the technology, describes basic operation, and details
the corresponding data structures.

Programming and CDTV Multimedia 173

32.11 CDTV Specifics .License Material Overview

CDXL Toolkit

This set of CLI-based utilities helps you capture and edit video/audio sequences and write programs
to play the results. The disk contains:

• Eight separate tool programs

• A standard ’C’ include file

• An example source file

• Example files in CDXL format

The CDXL tools provided are:

XLMake
XLPlay
XLInfo
XLJoin
XLCopy
XLTHm
XLAudio
XLCIean

Creates or spends to a CDXL file.
Simulates playback of a CDXL file from a hard disk drive.
Displays detailed information about a CDXL file.
Combines multiple CDXL files into a single sequence.
Copies frames from any point in a CDXL file into a new file.
Removes frames from a CDXL file.
Inserts an audio track into a CDXL file.
Rebuilds the frame sequence numbers within a CDXL file.

ISO DevPak Diskette

This diskette contains the software necessary to build an ISO 9660 CD-ROM image from your
AmigaDOS SCSI disk drive. Numerous utility programs are included, such as:

iso
Scans your AmigaDOS source diskette, and prepares a control file listing all the filenames and
their directories, in ISO foimat.

buildtrack
Creates the ISO 9660 image. This image may then be sent to a pre-mastering center for creation
of a write-once CD-ROM.

cdtv.tm
Contains the CDTV interactive multimedia logo, displayed on booting up all CDTV applications

rmtm
Removes the logo from the screen

bookit
Reads the CDTV preferences, to center the screen, set the Woricbench colors to black, start the
CDTV screen saver, etc.

Playerprefs Library

The playerprefs.library contains many useful routines allowing you to center a CDTV screen ac¬
cording to CDTV preferences, start the Audio control panel, read and update the CDTV preferences,
and insert joystick invents in to the input food chain.

174 CDTV Developers Reference Manual

CDTV Tools Disk

This diskette contains a series of tools useful to developers. These include:

Audio Tools

Playtrack
NoReset
Audio2

A simple CD audio player, in source and executable.
A utility which prevents the system reset when a CD is ejected.
An 8SVX example

Include files
All the headers and include files necessary for CDTV development.

Compression
Debox information on the compression routines included in the ROMs of the CDTV
SBox A CLI-driven file compressor

Debug

A full set of Amiga debugging tools

Fonts
Helv 18 and 25 fonts, from Xiphias. These fonts, which are used in the Xiphias TuneTable products,
are available to developers. These fonts may be included in your CDTV application, with no
royalties payable.

Prefs

Utilities to read and write CDTV preference settings

CDXL
Sample source code in ’C’ to set up and play back a CDXL transfer.

Programming and CDTV Multimedia 175

Graphics.CDTV Graphics 33.1

CDTV Graphics

CDTV is remarkable in part because it builds upon tire innovation of the Amiga by combining it
(in a very convenient fonn) with a mass storage device. The graphics abilities of the Amiga have
always cried for such an addition and it is the CDTV user and programmer who will benefit. There
are, however, caveats to be aware of. The unit will be used (almost exclusively) in ways in which
home computers never have been. It is up to you, the CDTV application designer, to insure that
your application is as useful and accessible to the CDTV user as possible. This article introduces
CDTV’s graphics abilities and draws attention to important considerations for application design.

Coprocessors

CDTV is able to process graphic information as quickly as it does because the CPU is aided by
a number of coprocessor chips. One of these, Copper, controls nearly the entire graphics system.
Among other duties, it controls register updating, positioning and rendering of sprites (graphic
elements), modify color palettes, and control the blitter. The blitter (contained in the coprocessor
chip known as Agnus) is capable of complex manipulation of large amounts of data. It is heavily
used by the graphics system.

Information on programming the blitter can be found in the Addison-Wesley Amiga ROM Kernel
Reference Manuals, but one important technical note is worth repeating here.

WARNING ON INTERMIXING BLITTER AND PROCESSOR MEMORY ACCESS or
DEALLOCATION

Many of the graphics.library functions use the blitter, most notably those which render text and
images, fill or pattern, draw lines or dots, and move blocks of graphic memory.

These functions generally operate in a loop, doing one plane at a time as follows:

OwnBlitter(); /* Get control of the blitter */

for (planes=0; planes < bitmap->depth; planes++)
{
WaitBlit ();
start a blit
}

DisownBlitter(); /* Relinquish control of the blitter */

The code above always waits for the blitter at the start, and exits after the final blit has been started.
It is important to note that when these blitter-using functions return to the caller, the final (or only)
blit has been started, but not necessarily completed. If you are only intermixing such graphics
calls, this is efficient, because the next graphics blitter call will wait for the blitter to be done before
starting its first blit.

However, if you are mixing such graphics blitter calls with processor access of the same graphics
memory, or if you plan to immediately deallocate or reuse any of the memory areas which were

Programming and CDTV Multimedia 177

33.1 Graphics :CDTV Graphics

passed to your last graphics blitter-using function call as a source, destination, or mask, then you
must first WaitBlitO to make sure that the final blit of the graphics call is completed before you
change or deallocate the memory it is accessing.

If you do not follow the above procedure, you will run into problems on faster machines or under
other circumstances where the blitter is not as fast as the processor.

Graphic Modes

CDTV offers a wide array of screen modes (horizontal and vertical sizes) and depths (number of
bitplanes, which determines the number of colors). Some are available immediately, under the 1.3
operating system. More will be available with the 2.0 operating system and the Advanced Video
Mode hardware (discussed later).

Video Modes

The basic video modes and their attributes are charted below.

Default Resolution
Horizontal x Vertical

(in pixels) Needs Needs Maximum HAM/EHBf
Video Modes NTSC PAL 2.0? ECS?f Colors Available?
Lores 320x200 320x256 No No 32 out of4096 Yes
Lores-Interiaced 320x400 320x512 No No 32 out of4096 Yes
Hites 640x200 640x256 No No 16 out of4096 No
Hires-Interlaced 640x400 640x512 No No 16 out of4096 No
SuperHires 1280x200 1280x256 Yes Yes 4 out of 64 No
SuperHires-Interiaced 1280x400 1280x512 Yes Yes 4 out of 64 No

f The Enhanced Chip Set is a replacement set of graphics manipulation/display chips,
t HAM (Hold-and-Modify) and EHB (Extra-Half-Brite) modes are special graphic modes that build
upon certain base modes and yield additional colors in a memory-frugal way.

HAM mode allows up to 4,096 colors on the screen at one time. In normal CDTV graphics modes
as each value formed by the combination of bitplanes is selected, the data contained in the selected
color register is loaded into the color output circuit for the pixel being written on the screen.
Therefore, each pixel is colored by the contents of the selected color register.

In HAM mode, however, the value in the color output circuitry is retained, and one of the three
components of the color (red, green, or blue) is modified by bits coming from two "control" bitplanes.

EHB mode allows twice as many colors as its base mode (up to 64 colors in either Lores mode) by
giving each color in the base mode a companion color that is half as intense. For example, a base
color of white (OxFFF) would have the companion color grey (0x888).

See the Addison-Wesley Amiga ROM Kernel Reference Manual series of books for full and complete
information on CDTV’s graphics functions as well as descriptions of the CDTV’s custom chips and
graphics modes.

The article, “Getting the Best Image for Your CDTV Applications” (elsewhere in this chapter),
contains a chart of the amount of computer memory required for the various screen modes.

178 CDTV Developers Reference Manual

33.1 Graphics:CDTV Graphics

CDTV Viewing

The CDTV user will (most likely) be viewing the application on a television rather than a computer
monitor. Because of this, the CDTV developer must keep several important factors in mind when
creating a CDTV title:

• Televisions are notorious for being adjusted to "overscan" the displayed image. This can result
in objects rendered at the very edges of the display being "lost” behind the television tube’s
bezel. In addition, keeping screens of information centered (and keeping die most important
graphics elements toward the center of the screen) are necessary to insure that the user doesn’t
miss anything of importance.

• The CDTV-to-television video connection will most likely be via RF (radio frequency) rather
than direct video or RGB (each primary color separately) input. This is the least desirable
method because of signal loss and excessive noise, but it is also the most commonly available
method for inexpensive televisions.

• The NTSC (National Television Standards Committee) video signal does not handle high
intensity values well. Avoid selecting colors which have RGB (Red, Green, Blue) values above
OxDDD (hexadecimal).

• The CDTV user will typically be seated across the room from the television screen. Text
rendered on the screen must be large enough to be easily read. Ideally the user should be able to
alter the size of the font used by an application if needed. Icons, selection buttons, etc. should
also be sized such that they can be discerned from a reasonable distance.

• Televisions typically have coarser dot pitch (larger pixels) than a monitor. Diagonal lines may
appear excessively jagged without some form of anti-aliasing. The user’s distance from the
television will actually help alleviate this problem.

The most important step the CDTV developer can take to prevent releasing an application which
violates the above "rules" is to test the application on a "home" television throughout the development

Animation

If a picture is worth a thousand words, an animation must be worth millions. Thanks in part to its
coprocessor chips, CDTV is able to display graphic images rapidly enough to simulate movement.
There are powerful methods of compressing these images either to store more of them, read them
in more rapidly, or both. Numerous software packages exist for the Amiga (and hence for CDTV)
that can allow the artist and non-artist alike to create sequences of animation. Many of these
packages include small "player” programs that can display the finished animation without the
memory overhead of the package it was originally created with.

Commodore’s proprietary CDXL (described elsewhere) can also be used to bring graphic informa¬
tion off of the CD-ROM rapidly enough to allow impressive near-video animation.

Programming and CDTV Multimedia 179

33.1 Graphics :CDTV Graphics

Differing Video Formats

CDTV is available in countries using the three major video transmission methods: NTSC (National
Television Standards Commitee), PAL (Phase Alternate Line) and SECAM (electronic color system
with memory). It is important to remember that these different formats have different display
specifications, and that an application designed under one of them may not look the same under a
different format.

Chief among these differences is the number of scan lines. Examine the chart of basic video modes
(above) to see the differences between NTSC and PAL. It is possible to query the user's CDTV to
leam which type of video format it is configured for and account for the different format qualities.

Advanced Video Mode

The Advanced Video Mode (available shortly) will greatly enhance the color palette in the high
resolution mode. A three bitplane AVM screen, which would normally yield only 8 out of 4,096
colors will instead give nearly 100,000. A four bitplane screen would similarly give nearly 4 million
colors! Specific programming information will be available when the AVM is introduced to CDTV
developers.

180 CDTV Developers Reference Manual

332 Graphics . Getting The Best Image For Your CDTV Application

Getting The Best Image For Your
CDTV Application

This article presents issues which developers should be aware of when generating images for use
with the CDTV system. It will also present several techniques for maximizing image quality making
use of ASDG’s The Art Department.

General Issues For Displaying Imagery on Any Amiga

Following is a discussion of issues which relate to displaying imagery on any Amiga-based system.

Choice of Video Mode

The choice of video mode is one of the most basic decisions you will have to make when preparing
an Amiga-based application. The choices which you must make relate to:

Resolution
The Amiga offers high and low resolution modes. Each offers some advantages but at some

cost.

High resolution offers a sharper image and permits more information to be displayed at one
time. However, it limits the number of colors displayable at one time and can degrade system
performance.

Low resolution offers a richer color capability, can use less memory and does not affect system
performance as much as high resolution. However, low resolution screens cannot display as
much information and can appear "chunky."

Palette Depth
The number of colors which will be used during the display of images must also be considered.
A richer set of colors nearly always produces more pleasing results. However, deeper palettes
come at the expense of resolution (you must forego high resolution if you want more than 16
colors), memory, and animation speed.

Interlace
The vertical resolution of an image can be doubled by placing the Amiga into an interlaced
video mode. Interlaced video does not increase the loading caused by the display upon the
processor but it does double the memory requirement of any given display. The principal
liability of interlaced video is the visible flickering that it can cause on machines which do not
have a deinterlacer. Horizontal lines, especially when thin and highly contrasting to surrounding
pixels, can produce an extremely noticeable flicker which can become annoying.

Overscan
By using overscan, the visible border around an Amiga screen becomes usable display area.

Programming and CDTV Multimedia 181

332 Graphics .Getting The Best Image For Your CDTV Application

Overscan (which can be along the vertical and horizontal dimensions independently) adds to
the TV-like appearance of an Amiga display. An overscanned screen consumes more memory
and can drain a significant amount of processor speed especially in some high resolution
screen modes. The degree of overscan which is necessary or acceptable varies depending upon
whom you ask. Many people specify a maximum overscan screen as 768 pixels wide (in high
resolution) by 484 high pixels (in interface) in NTSC or 592 pixels high in PAL. However, a
limit of736 pixels wide in high resolution is recommended for best results.

Mixing Video Modes

On the Amiga, it is possible to mix different video modes on-screen simultaneously with the
following restrictions:

• Different video modes may be horizontally stacked only. Two video modes cannot share the
same machine.

• A small number of lines (approximately 3 non-interlaced lines) become unusable when transi¬
tioning from one video mode to another. Worse still, the mouse pointer will become obscured
while passing through these lines.

• Transitioning from one video mode to another consumes a small amount of processor band with.

• If any of the visible screen modes are interlaced, the entire screen will be displayed in interlace.

Within these restrictions, you can see that it is possible to create a display with (for example) text
displayed in high resolution and four colors and an image displayed in low resolution with 64 colors.

Chip RAM Contention

Some Amiga display modes place a greater load on machine resources than others. The table below
indicates the relative amount that a given display mode (without overscan) will affect the CPU when
it attempts to gain access to a Chip memory location.

Horizontal

Resolution
Number of Bitplanes

3 4 5

Low None None None None Some Moderate
High None None Moderate Considerable — —

Overscan can considerably decrease available processor time. When displaying a high resolution
four bitplane screen, for example, the processor is locked out from accessing CHIP RAM during
the display of an entire scanline. It can only access CHIP RAM during the horizontal and vertical
retrace times. Horizontal overscan shortens the available horizontal retrace time and vertical
overscan further diminishes the length of available vertical retrace time.

No Barriers To Fast. The processor is not impeded from accessing memory located on
the Fast memory bus.

182 CDTV Developers Reference Manual

332 Graphics . Getting The Best Image For Your CDTV Application

Memory Requirements

Each screen mode will consume a different amount of CHIP memory. The table below indicates
how much memory is used (in bytes) for each of the given common screen formats:

Screen

Size

Number of Bitplanes

1 2 3 4 5 6

320 by 200 8000 16000 24000 32000 40000 48000

320 by 400 16000 32000 48000 64000 80000 96000

640 by 200 16000 32000 48000 64000 — —

640 by 400 32000 64000 96000 128000 — —

368 by 240 11040 22080 33120 44160 55200 66240

736 by 480 44160 88320 132480 176640 — —

Aspect Ratio

Each dot displayed on an Amiga screen has a specific shape. Unfortunately, this shape is not square.
As a consequence, pixel aspect must be considered when displaying images from a wide variety of
sources.

Many factors affect the aspect of on-screen pixels. These include:

Screen Format
Switching between high and low resolution doubles or halves the number of pixels displayed
across the screen. Clearly, this affects the width of each pixel with high resolution pixels being
half as wide as their low resolution counterparts. Similarly, switching between interlaced and
non-interlaced video halves or doubles the number pixels shown vertically.

Dots on the Amiga screen most closely approach square when in:

• Low Resolution, Non-Interlaced

• High Resolution, Interlaced

In these modes, the ratio of a pixel’s width to its height is approximately 10 to 11 in NTSC.
Low resolution pixels shown in interlaced video are approximately 5 to 11 (width to height).

NTSC Or PAL
PAL video fits more horizontal lines onto the same sized display area. Therefore, PAL systems
can come closer to square pixels than NTSC systems.

Monitor Settings
Every monitor has controls (often accessible by the user) which affect the width and height
of the displayed image. Clearly, even the most careful planning and compensation for pixel
aspect can be undone by the user.

Without considerations for pixel aspect, images scanned with most optical scanners (which pro¬
duce square pixels) will appear stretched or distorted even when shown in lores/non-interiaced or
hires/interlaced modes.

Programming and CDTV Multimedia 183

332 Graphics ."Getting The Best Image For Your CDTV Application

Other sources of square pixels include 3D modeling programs and images created on non-Amiga
computer systems.

International Video Formats

As indicated in the previous section, the differences between NTSC and PAL will affect your product
development by affecting the aspect of displayed pixels. NTSC and PAL also differ in how much
displayable area is available on screen. The standard height of a non-interlaced, non-overscanned
NTSC screen is 200 pixels. The same screen on a PAL system is 256 pixels high.

The problem that different imaging areas present is particularly nasty if you must have only one set
of images for use on both NTSC and PAL systems. For example, if an image is created for proper
viewing on an NTSC system, it will not fill as much of the screen and will appear distorted on a
PAL machine. If an image is intended for proper viewing on a PAL system, then part of the image
will be obscured on an NTSC system.

Therefore requiring only one set of imagery for use on both PAL and NTSC systems may be an
unrealistic goal. Th recommendation here is to create a separate set of images for use on PAL and
NTSC systems. Since CD-ROMS are quite large, and other internationalization factors will come
into play in your software anyway, this may not as unpleasant as it first appears.

CDTV Specific Issues

This section contains a discussion of issues which apply specifically to images for use on the CDTV
system.

TVs Not Monitors

As a developer, you can expect the Amiga owner to have a high resolution computer monitor for
use on his system. This is not the case with CDTV. The expected display device is an ordinary
television. This affects you in two ways.

First, televisions vary incredibly in quality and sharpness. High resolution text (for example) which
is perfectly readable on your development system may not be readable at all on a television.

Second, the interface to television, composite RGB, is not as precise as the analog RGB normally
used in Amiga displays. High contrast transitions which appear perfectly clear on your development
system may become ugly masses of bleeding color on a television.

Recommendations to overcome these problems include:

• No CDTV development environment is complete without a cheap color TV running in parallel
with your high resolution computer monitor. The best way to anticipate how your product will
look in the consumer’s home is to view your product the same way the consumer will.

• Avoid high contrast transitions especially where text is concerned. Especially avoid saturated
reds.

• Avoid images that are too bright. Specifically, try to keep your brightest colors at an intensity
level of less than 13 (using the Amiga standard scale of 0 to 15).

184 CDTV Developers Reference Manual

33.2 Graphics .'Getting The Best Image For Your CDTV Application

Distance

The typical computer user views his high resolution computer monitor from no more than four feet
away. The typical television viewer is generally 6 to 10 feet from the set. This means that visual
detail may be lost simply because the user is Anther away from the display device than you had
anticipated.

This can be a significant advantage, however, because:

• The advantages of dithering become even more pronounced as the viewing distance makes it
unlikely that the user will be able to discern the individual dots.

• Low resolution displays (with their richer color palettes) can be much more effective than
limited palette high resolution displays. The larger viewing distance means that richness of
color will be much more important than sharpness of dots.

Phosphor Burnout

It is very likely that a CDTV user will leave the device on for long periods of time without actually
being present to cause the screen display to change. If your application does not include a self
contained "screen blanker”, it is likely to bum a hole in the user's television set, not something
which is likely to please your customer.

Getting The Best Image

This section describes various techniques which are helpful in getting the best image quality possible
for your CDTV images. These techniques assume the use of ASDG’s The Art Department (TAD)
for image development

Image Sources

It is possible that no personal computer has ever offered more alternatives for capturing or generating
images as the Amiga. How you generate or capture an image can significantly affect the quality of
your end product Following is a summary of imagery sources and where we recommend their use.

Color Scanners
Color scanners should be used whenever you need to capture flat art Video digitizers simply do
not have the resolution to provide high quality imagery for a broad range of applications. Purdy
gray scale scanners are not recommended for CDTV applications since CDTV is primarily a
color device. Additionally, color scanners can scan in gray scale and cost only marginally
more. Color scanners also offer advantages in speed and ease of use compared to other color
image capture systems.

Video Digitizers
Video digitizers are recommended for capturing non-flat art or for capturing images from a live
or video source. The quality of the images you can capture with a video digitizer is strongly
affected by the quality of your video source. Specifically, where a video camera is being used,
the quality of the camera can make or break the image.

Programming and CDTV Multimedia 185

332 Graphics . Getting The Best Image For Your CDTV Application

Paint Boxes or Paint Programs
There are a number of high-end paint boxes which can create enormously detailed imagery
such as the Quantel and Waverfront systems. Also, images created with any personal computer
based paint programs such as Deluxe Paint, ColorRIX, TIPS, or RIO can be employed.

3D Modeling Systems
3-D modeling systems can play an essential role in image development This is especially
true for the creation of complex scenes which cannot be scanned or digitized since they do not
actually exist in the real world.

Dithering

Dithering is one of the most important techniques for increasing visual realism in your CDTV
images. Dithering sacrifices some of the spatial sharpness of the image to dramatically increase the
color fidelity of the image.

Carried to an extreme, dithering can produce the appearance of true gray scales on a single bitplane
monochrome screen. More typically, the dithering techniques found in TAD can produce the
impression of hundreds of colors on a 16 color screen, or the impression of many thousands of
colors on an Extra-Half-Bright or Hold-And-Modify screen.

TAD offers seven dithering methods (including the choice of no dithering). We have found our
Floyd-Steinbeig implementation to be suitable in most instance, especially when creating images
for display on high resolution screens.

Dithering cannot increase color fidelity where no increase is possible. For instance, there is no point
in dithering a 32 color picture if the original image data contained only 32 colors. In other words,
for dithering to have an effect, there must be more colors in the original data than there will be in
the rendered image.

TAD can synthesize new colors, however, when its scaling function is used. For example, if a 640
by 400,32 color image is scaled down to 320 by 200, TAD can synthesize as many as thousands of
new colors as it performs the reduction. This is accomplished by pixel averaging all the different
combinations of the original colors. In this way, the spatial resolution lost in reducing the size of
an image can often be compensated for with increased color range.

Dithering can sometimes produce unwanted, seemingly stray dots. These can be eliminated within
TAD by slightly increasing the contrast and rendering, or by invoking the RIP (Remove Insulated
Pixels) functions.

Aspect Correction

TAD offers highly precise scaling both upwards and downwards in size. When correcting for aspect,
don’t forget that the width can be enlarged rather than always shrinking the height

An easy way to determine just how far off-square your Amiga/monitor combination is, is to draw a
1 inch square on paper and then scan it in. Using TAD, display the alleged square in many diverse
screen formats and experiment with the scaling functions to gain experience on making a square,
square.

186 CDTV Developers Reference Manual

332 Graphics:Getting The Best Image For Your CDTV Application

Interlace

Making An Interlaced Image

Interfaced low-resolution images, especially in HAM, can appear exceedingly crisp on a CDTV
display. Interfaced low-resolution is, however, one of those resolution combinations which is
nowhere near square in aspect

To produce an interfaced low-resolution image, simply take your square or near-square aspect image
and scale down the width by approximately fifty percent. Alternatively, you could scale up the
height by one hundred percent

When To Interlace

Natural images (people, places, etc.) can generally be displayed in interface without significant
flicker problems. Images which have a lot of horizontal lines or very stark transitions from color
to color (such as some images created with 3D graphics programs) will fare very poorly when
displayed in interface.

Overcoming Interlace Flicker

If you have a problem image which you need to display in interface, try the following:

• Try reducing the contrast of the image slightly. This may cause any flickering scan lines to
become more subdued and therefore less noticeable.

• Tty scaling the image upwards or downwards slightly. This may cause flickering scanlines to
be spread over more or fewer displayed scanlines and therefore be less noticeable.

Increasing Visual Punch

Contrast

As indicated in the preceding section, a slight increase in contrast can eliminate seemingly stray
dots when rendering a dithered image. A slight increase in contrast can also add a considerable
amount of visual punch to an image.

Gamma Correction

TAD offers variable Gamma Correction (non-linear color correction) which allows you to brighten
an image without loss of detail which the standard brightness control would cause. Increasing the
Gamma value of an image can dramatically increase the visual punch of an image, can be used as a
special effect, or can bring out detail in a dark image.

Programming and CDTV Multimedia 187

332 Graphics .’Getting The Best Image For Your CDTV Application

Who’s Afraid of Gray Scale

Sixteen shades of gray (especially when dithered by TAD) covers the spectrum of grays far better

than even 64 or4096 colors covers the spectrum of color. Don’t be afraid of using gray scale images

in your application.

TAD offers a color to gray scale conversion function which takes into account the relative frequency

response of the human eye. The color to gray conversion function can produce some exceedingly

realistic images.

Flips And Mirrors

If your subject matter allows for flips and mirror images, you can increase your composition

flexibility by using a flip or mirror of an image rather than the original image. For example, if a

person looking off to the left simply looks better than a person looking off to the right, flip him.

Avoid flips or mirrors when text is visible in the image or when technical data or drawings when

flipping would either be noticeable or change the meaning of the image.

Genlock Considerations

If is possible that your application may be used on a CDTV on which there is a Genlock device. In

this case, Genlocked video will appear through any areas in your imagery which are drawn in pen

(or color register) 0.

You can easily make images Genlock-opaque in TAD by instructing TAD not to use color register 0

during its rendering. This is accomplished in the Palette control panel by selecting a non-zero color

offset and requesting a CUST (or custom) rendering.

Mixing Computer Chosen And Manually Chosen Colors

If you wish to render text directly over an image you may wish to take the text colors into

consideration when producing the palette for the image. If the text colors are not taken into account,

you will be forced to use one of the colors appearing in the image. This often produces unacceptable

results.

Using TAD's palette controls, you can set aside color registers to be used for titling in two ways.

The first method produces images which do not have the reserved color register appearing anywhere

in them. This can be done using the same technique as reserving color register zero described in
the previous section. Simply decrease the number of colors to be used and set the offset of color

zero to the desired value.

For example, to reserve four colors for titling within a 32 color image:

1. Set the total number of colors to 32. This defines the depth of the resulting image.

2. Set the number of colors to be used to be 28.

188 CDTV Developers Reference Manual

332 Graphics ’.Getting The Best Image For Your CDTV Application

3. Set the offset of color zero to either 0 or 4. Setting this value to zero reserves a block of 4
colors after the 28 colors used by the image. Setting this value to 4 reserves 4 colors prior to
the 28 used by the image.

4. Render the image using the CUST setting.

5. Set the 4 reserved colors to their desired values.

6. Save the image to disk.

This will produce an image which will not contain any reference to the unused block of registers.
You can modify the unused registers to any value and not affect the look of the image.

The second method allows you to set aside a given number of colors as before, but then allows you
to meige these reserved colors into the overall image. This allows you to specify specific colors
which must be present in the image, and then lets The Art Department do the rest

Jumping into the above sequence of steps at step 7:

7. Lock the palette so that TAD does not recreate new colors.

8. Set the offset of color zero to zero.

9. Set the number of colors to be used to the total number of colors available.

10. Rerender the image.

11. Save the image to disk.

The image saved to disk will incorporate all of the colors available in the screen mode you’ve
chosen including the several which you picked by hand. This technique allows you to automatically
mix chosen colors with ones you have manually chosen.

Merging Palettes

Another variation on the technique outlined above is the ability to merge the palettes of several
pictures into a single palette which can be used to display several pictures on the same screen at the
same time.

By systematically locking and freeing the palette and restricting the number of colors which can be
chosen at any given time, you can extract key color information from several images to produce a
palette tuned to the needs of all of the images as a group. Then, render each image using the entire
palette to get even better results.

Summary

CDTV is represents breakthrough technology not because it contains whizz-bang Amiga technology,
but because it bundles this technology in a package perfect for integration into the typical consumer’s
lifestyle.

While graphics may be important to computers...imagery is what’s important to CDTV. Applications
which exploit CDTV’s rich imaging capability stand a significantly better chance at mass acceptance
than those which do not

Never forget part of CDTV is quite literally TV. Mastering the techniques and addressing issues
described in this article will make the imagery in your CDTV applications more vivid and true to
life and therefore, make them more readily accepted.

Programming and CDTV Multimedia 189

333 Graphics :PAUNTSC Issues

PAL/NTSC Issues

CDTV is an international machine, available in the United States, in Europe, and other locations
worldwide. The software market for this machine is therefore international as well. To reach the
entire market, a CDTV title must work properly with both the PAL and NTSC television standards.
Most CDTV users will have their machine connected to a television, rather than a monitor. As
a result, their screen images will be on a comparatively low quality display, one in which it is
especially important to pay attention to the characteristics of the television standard if an attractive

(and viewable) application display is to be produced.

The basic differences between PAL and NTSC are in frequency, number of lines per screen, and
the method of color generation. NTSC screen refresh frequency is 60Hz, while PAL is 50Hz.
Non-overscan NTSC screens have 200 lines, while PAL screens have 256 lines. Both television
standards support INTERLACE, which halves the refresh frequency (to 30Hz for NTSC and 25Hz
for PAL) while doubling the number of lines that can be displayed (400 for NTSC, 512 for PAL).

Both displays can be overscanned, giving 484 lines in interfaced NTSC and 592 lines in interfaced
PAL. The colors displayed will also differ somewhat between PAL and NTSC. A color that may
appear as a pale magenta on a PAL system might appear as a bright pink on an NTSC system.
All of these differences will present problems that must be addressed when programming for the
international market in order for a title to be be successful worldwide.

The first problem is the number of screen lines. It is difficult to design one screen for both 200 and
256 lines and still make good use of the display area. You may end up designing specifically for
only one of the systems and converting to the other. If you design for the PAL case of256 lines, you
will have to shrink the image down when running on an NTSC system. If the system is designed
for an NTSC 200 line system, the image has to be centered on a PAL system and then filled with
something above and below the image. The optimum solution is a separate design for each system.
This gives the desirable impression that the application is designed for the local market, no matter

where local is.

A PAL screen requires more memory than an NTSC screen due to the additional lines on the
PAL screen—56 non-interiaced/112 interfaced. This can cause problems for applications which
are coded first as NTSC and then enhanced to switch to PAL. If the NTSC version uses too much
memory, there won’t be enough left for the switch to PAL.

Testing on both NTSC and PAL will generally show if an application has this problem. It is best
to find this out early in the development process; it is difficult to squeeze 40K or 50K out of an
almost completed application, especially when the rest of the company is pushing for the product

to be shipped.

The difference in the number of screen lines also changes the aspect ratio of the display. It is
possible to design screen images that look good under both PAL and NTSC, and it is also possible to
scale according to the current aspect ratio. It is perhaps easiest, however, to keep different versions

of the images for use in PAL mode and in NTSC mode.

Programming and CDTV Multimedia 191

333 Graphics .PAUNTSC Issues

Under VI.3, the mode can be checked by examining the PAL bit in GfcBase DisplayModes field.
Under V2.0, the display database can be checked for the default monitor in the CDTV woiid, but it
is usually more important to determine what the unit really is, rather than what the current default
video mode. The VI.3 method, therefore, is more appropriate than the V2.0 method.

It is also necessary to establish the basic clock rate of the CDTV unit Finding the default mode
will not necessarily tell this because V2.0 allows the user to select a different video mode than the
machine is jumpered for. The basic clock rate is required in certain calculations for proper riming

and audio.

Graphics.library Bug For PAL. There is a bug in the VI.3 graphics.library which can
cause the CDTV unit to come up in NTSC mode even though it should come up in PAL
mode. There is an update of the CDTV OS ROM which fixes this problem. That ROM
version will be available in the A690 CDTV attachment for the A500 and in later CDTV
units. V2.0 does not have this problem.

If you do decide to correct the situation yourself, make sure you perform the appropriate version
check. Do not attempt to change values in GfxBase under V2.0; not only is it not necessary, it is
unwise as well.

The following routine can be used to determine if the VI .3 graphics.library made the wrong decision
about PAL or NTSC. If the incorrect decision is detected, the system can be rebooted and given
another chance. (Or the values in GfxBase can be corrected).

/*
* PALCheck

* Routine to test for presence of PAL.
* the system settings, try again

If this doesn't match

extern struct Custom custom;

int palcheckO

{
UBYTE agnus_chip_id;
register int i;
ULONG mode=NTSC; /* initial assumption */

agnus_chip_id ® (custom.vposr>>8) & 0x7f;

if ((GfxBase-OpenLib("graphics.library"))==NULL)
return(0); /* strange ? */

if (GfxBase->LibNode.lib_Version > 35)
return(0); /* got it right for 2.0 */

/* so we don't have to do this */
Disable();
if (agnus chip id & 0x20)

{
/* new hires agnus */
/* an ntsc hires agnus has pin 41 grounded */
/* a pal hires agnus has pin 41 open */

if (!(agnus_chip_id & 0x10))
mode=PAL;

}
else

(
/* an ntsc display has 262 lines, counts to 261 */
/* a pal display has 312 lines, counts to 311 */
/* must be run while disabled */

if ((i = vbeamposO) > 270)

{

192 CDTV Developers Reference Manual

333 Graphics :PALJNTSC Issues

mode=PAL;
}

else
{

/* wait till vbeampos >» 256 */
while ((i = vbeampos ()) < 256);

do
{
if (i > 270)

{
mode=PAL;
break;
)

i = vbeampos();
) while <i > 50); /* if it falls back then no pal */

/* 50 is used figuring the genlock won't */
/* reset higher than that every frame time */

)
)

Enable ();

if ((mode==PAL) fit ((GfxBase->DisplayFlagsfimode) ==0))
{
printf("ERROR: graphics opened in wrong mode\nw);
Reset ();
}

else
{
printf("PAL/NTSC decision correct\n");
)

CloseLib(GfxBase);
>

The CDTV playerprefs.library routine CenterCDTVViewO will provide centering information
according to the user’s Preferences settings, automatically taking the line difference between PAL
and NTSC into account.

The 60Hz vs. 50Hz difference will generally show the most effect on timing if VBLANK interrupts
are used or if the speed is synchronized to television frame update rates. If this technique is adopted,
your application will run faster under NTSC than PAL. This will be especially noticeable if you
time music and sound effects. Use the timer.device for basic timing because it compensates for PAL
and NTSC. If you do your own timing, you will need to perform the same compensation if you want
the application to act the same under PAL and NTSC.

The basic clock frequency differs for the NTSC and the PAL CDTV units. While the difference is
not great, and for most purposes can be ignored, it does make a difference for Amiga audio, and the
divisor used for directly accessing the CIA timers. Unfortunately, there is no place in the OS where
this number is stored. Instead, the application must read the PAL or NTSC bit and infer the rest

If the application is running on an NTSC machine, the NTSC clock rate divider constants should be
used for audio and timer rates. If the application is running on a PAL machine, the PAL clock rate
divider constants must be used. If the proper constants are not used, the pitch of the sound produced
by using a specific waveform will differ between PAL and NTSC. The formulas for NTSC and PAL
are as follows:

NTSC
The clock constant is 3,579,545 ticks per second.

PAL
The clock constant is 3,546,895 ticks per second.

The formula to select the period value is as follows:

Programming and CDTV Multimedia 193

333 Graphics :PALJNTSC Issues

period value = desired interval clock constant

clock interval samples per second

An example of an integer calculation using these values follows:

♦define NTSC_CLOCK (3579545)
♦define PAL_CLOCK (3546895)

ULONG clock, clockxlOO, periodxlO, period, hertzxlO, sampleBytes;

/* Check GfxBase->DisplayFlags and set clock to appropriate value
* Set hertzxlO to 10 * desired frequency in hertz
* Set sampleBytes to number of bytes in the one cycle waveform sample

*/

clock « (GfxBase->DisplayFlags & PAL) ? PAL_CLOCK : NTSC_CLOCK;

hertzxlO = 440 * 10; /* example frequency */
sampleBytes =32; /* example one cycle sample length */

clockxlOO = 100 * clock;
periodxlO = (clockxlOO / hertzxlO) / sampleBytes;

/* round off */
period = (periodxlO + 5) / 10;

(Also sec the 2.0 Amiga Hardware Reference Manual for additional details in the audio hardware
section. There is also a table giving precalculated period values for a five octave even-tempered

scale)

Unless the proper divider constants for the system are used, the Amiga sounds will not sound quite
right, especially when mixing Amiga sounds and music, and CD sounds and music (which may
not be a good idea anyway). This is due to the audio DMA clock rate difference caused by the
same dock frequency difference between PAL and NTSC units. However, the CD frame rate is
completely unaffected by the difference in basic clock frequencies because it is the same under PAL
and NTSC. This makes the CD Frame rate a convenient clock to use for timing purposes.

As mentioned earlier in the article, PAL colors do not look the same as NTSC colors. Saturated
colors and pale colors are especially affected. Colors should be subdued to minimize this. Color
bleeding will also be minimized through use of subdued colors.

On a saturation scale of 0 to 15, color intensity should never be greater than 13. At the same time,
pale colors (such as pale pink, pale green, etc.) should be avoided as they may appear fine in one
mode, but very intense or completely washed out in the other. Background colors should be off

white or grey.

Testing on both PAL and NTSC television sets or monitors is really the only way to be sure an
application has avoided problems. Sometimes an entirely different color scheme is needed under
PAL and NTSC. While holding to the above guidelines will generally give pleasing results under
both standards, testing is the only way to be absolutely sure.

Testing

A CDTV application should be tested under both PAL and NTSC systems. Attention should be
paid to the appearance of the screens under both PAL and NTSC. Screens should fill the available
area, and be properly centered. The feel of the application should be the same under both PAL and

194 CDTV Developers Reference Manual

■ Graphics.PALINTSC Issues 333

NSTC. Special care will be required in selection of colors. Colors that appear subdued under one
standard may appear garish when viewed on the other.

A multi-standard monitor is very useful in application testing, especially with the new CDTV units
which can switch between PAL and NTSC by pushing a button. There is no substitute for trying

the application under both PAL and NTSC.

Testing under PAL and NTSC should begin as early as possible during the development process,
rather than left as a last minute checklist item to be performed at the end of the QA process. Some of
the required changes may be involved, most notably screen design and freeing up enough RAM for
larger screens. It is better not to rush these changes at the last minute. The development process will
end much more smoothly if PAL and NTSC allowances are instituted throughout the development
process. The end of a project is usually hectic enough as it is without finding out that without major
modifications to the application, its market has suddenly become limited to only one part of the

world.

Programming and CDTV Multimedia 195

3.4.1 Sound.CDTV Sound

CDTV Sound

The Compact Disc was designed for sound. All other elements are latecomers. CDTV discs can use
CD-DA sound to its fullest extent, and if a CDTV title needs, and can afford, a symphony orchestra
recorded at the highest quality, it can have it

The Amiga computer was designed with stereo sound capabilities, and can deliver acceptable 8-bit
audio on four channels, two left and two right

A very normal decision that has to be made in designing a CDTV title is whether or not to use
CD-DA sound or Amiga 8-bit sound, or both. The purpose of this article is to outline the practical
considerations involved.

Here are some examples of the use of sound:

Speech
Spoken help for users in their own language
“Presenter” voice-overs giving information
Dialogue
Language teaching examples
Narrative

Music
Extracts for music teaching, information, or quizzes
“Background music" for mood
Karaoke
Backing tracks for buskers to play along to
Instrument samples for music creation titles
“Fantasia”-style music with pictures and animations
Games themes

Sound FX
User feedback “beeps”
Games
Atmosphere (jungle, beach etc.)
Spot effects for animations
Jingles for correct or incorrect answers

The imaginative use of sound can enhance the value of a title, and also enhance its user friendliness.
It can also ease the problems of creating multilingual titles. If no text is used in the title and all
information is given by voice-over, the same file layout and naming conventions can be used with
different presenters recorded in different languages. Switching languages, then, is simply a matter
of switching directories.

Programming and CDTV Multimedia 197

3.4.1 Sound.’CDTV Sound

Audio Feedback

There is now a wide variety of interfaces to the CDTV using infrared or wired connections. Given
that the response may be uncertain, as for example, when a user covers the infrared panel on the
hand-controller and presses a button, it is wise to give immediate feedback that a command has
been received and understood. This is also true where an action may result in a delay; searching a
large database might take many seconds or even minutes.

The simplest form of audio feedback is a keyclick. The simplest way to get keyclicks is to include
bookit c in your startup-sequence. Every time a key is pressed, CDTV will beep.

There will be circumstances where a beep is inappropriate: a presenter is describing something
and the user wants to abort the operation by pressing button B. Here the program should decide on
the appropriate response—in this instance it will probably fade the presenter out and await further
instructions. Any program which is using sound to this extent will have the audio channels under its
control, and will either have a sampled sound in memory ready to be played by the audio hardware,
or will have set up a tiny waveform. In both cases, the sample should be resident in Chip memory
at all times; reloading feedback data from the CD is not sensible.

Deciding when to beep or not can become complex, and the program code may become littered with
BeepO commands. A far better scheme is to insert a “wedge” in the input handler and provide a
conditional BOOLEAN for a further interrupt, which decides whether to beep or not Precise details
of this depend on whether you are using the audio.device or driving the audio hardware directly.
However, many programmers will prefer to handle this in their input handling loop, which will take
the following general scheme;

{* Modula-2 used as pseudo-code example *)

LOOP
IF ButtonPressed() & ValidButton(Button) THEN
IF BeepValid then Beep(GoodBeep) END;

CASE Button OF

I 0:BEGIN
(* show a menu or picture *)
BeepValid:-TRUE;
ActionO;
END;

I 1:BEGIN
(* spool music *)
BeepValid:-FALSE;
Actionl;
END;

END; (* CASE *)
ELSE
IF BeepValid THEN Beep(BadBeep);END;
END; (* IF ButtonPressed *)

CarryOnDoingSomething;
END; (* LOOP *)

Ignoring the details of what constitutes the code of the two functions ButtonPressedO and
ValidButtonO, this scheme allows called procedures to decide whether or not a beep should
be issued. An extension is the idea of Good feedback and Bad feedback. Conventional wisdom
holds that Good beeps are high in pitch and Bad beeps are reasonably low. Given the sampled
replay abilities of the Amiga/CDTV audio hardware they could just as well be a sigh of passion and
a grunt.

198 CDTV Developers Reference Manual

3.4.1 Sound:CDTV Sound

When there is no important sound activity going on, audio feedback is the simplest and most efficient
feedback.

Amiga Sound Versus CD-DA

The factors governing the decision as to when to use Amiga-generated 8-bit and when to use 16-bit
CD-DA are:

• Quality.

• Duration.

• Access to data on the CD.

The difference between 8-bit and 16-bit sound is best explained by analogy:

16-bit sound is equivalent to a picture with 6SS3S horizontal lines
8-bit sound is equivalent to a picture with 256 horizontal lines

or

16-bit sound is equivalent to a picture with 65535 colors
8-bit sound is equivalent to a picture with 256 colors

For the very highest possible sound quality, it is clearly impossible for an 8-bit sound system to
compete with one that has a resolution 256 times greater. The effective signal/noise ratio goes
up dramatically, and the fine detail of the waveforms is far greater. A title that explores the late
Beethoven string quartets is likely to require the full dynamic range of CD-DA.

In particular, quiet, sparse sound is much more difficult to capture and replay successfully on an 8-bit
system because the lower signal/noise ratio makes itself apparent in hiss, and the lower granularity
of the sample size tends to cause quantization artifacts, most evident where the waveform is hovering
around the zero line. In this circumstance, the digitizer will have difficulty deciding whether a bit
should or should not be set, thus introducing a random crackle at the very end of a dying note or
spoken phrase. Noise gating can reduce this for speech, but can be unpleasant on a delicate musical
phrase.

It may seem obvious to use CD-DA throughout a title, but this will reduce the total running time of
a title to about seventy minutes, not allowing for graphics and other data. By comparison, a mono
8-bit sound equivalent could easily yield over eight hours of sound.

The main problem apart from duration that is associated with CD-DA is the question of access to
data. While the CD-DA track is running, no further data can be drawn from the CD. This means
that all pictures and data must be fetched into memory before the CD-DA is started. Nevertheless,
because CD-DA play has effectively no memory requirements, almost the entire memory of the
CDTV unit is available for picture and data storage, much of which can be in compressed form. It’s
worth bearing in mind though that to load 800K of data into memory will take at least five or six
seconds, so a substantial user wait-time is generated.

For presenter speech and much music, the use of the 8-bit sound system has the advantage that the
transfer rate will be much lower, allowing sound and pictures to be loaded and played in a continual
stream. There is an initial load time of effectively nil, and the CD is being used as a form of virtual
memory.

Programming and CDTV Multimedia 199

3.4.1 Sound.CDTV Sound

Acceptable sample rates for speech will lie in the range between 16,000 samples/second and 22,000
samples/second. Taking the lower figure, we can see that given a reasonable average transfer rate
from the CD of 140,000 bytes/second, it is possible with good data organization on the CD to spool
continuous mono sound and load and display at least one 640*200*4 picture per second.

Even mixed-mode CDs employing CD-DA for the high-quality sound examples will benefit from
using Amiga 8-bit sound for all descriptive materials.

One less obvious benefit of CD-DA is ease of generation. The sound can be taken to the premastering
house on DAT or reel-to-reel tape and transferred with no further processing by developers, whereas
the 8-bit sound will almost certainly require digitizing by developers, and will require custom
program handlers to be coded and tested. If the CD-DA sound is arranged in conventional tracks on
the CD, one simple call to the CDTV_PLAYTRACK command in cdtv.device will produce the sound
in all its richness, and if program actions need to be synchronized with the sound, the installation of
a a function to increment an internal software clock is easily added with the CDTV JFRAMECALL
command. However, when CD-DA tracks are placed on the CD, it is advisable to leave sufficient
room in track 1 (the data track) for further additions and refinements to program code and data, if
you require the tracks to be very stable in their start and finish times.

A disadvantage of CD-DA is that a proof disc will be required at an early stage of development
with all sound finalized, whereas 8-bit Amiga sound can be altered and tested up to the last minute.

It is clear that the decision about the proportions of CD-DA to Amiga sound must be taken at an
early stage in the design process because it will govern program coding in almost all areas. It is
not uncommon for publishers to demand CD-DA quality at the outset for aesthetic reasons, and
then later require long animations and slide-shows to run concurrently with the sound. These two
requirements may well be incompatible.

Audio Capture Tools

The Amiga is well-supplied with hardware and software to capture 8-bit audio data in mono or
stereo. Almost all the currently available systems require audio data to be captured into memory.
Even at modest sampling rates, the memory requirement can be substantial—two minutes of mono
sound sampled at 16,000 samples/second requires nearly 2 MBytes of contiguous RAM.

When choosing a sampler, the primary consideration is quality. The Amiga has many DMA channels
and interrupts running continuously, and this causes electronic noise which is easily detected by
audio sampling hardware. Monitors can also inject buzz and hum into the system. Cheap samplers
rarely have efficient noise filtering stages because the components are expensive and the complexity
of the design goes up steeply for every decibel of noise rejection. This may not be apparent with
dense, compressed sound such as rock music—it will become very obvious with speech, or a solo
oboe. Samplers should be tested with low levels and quiet samples and listened to with good quality
headphones before any assessment of quality can be made. Relying on demonstration samples
included with the package is dangerous. Samplers that really attempt the highest quality and are
powered from the Amiga will switch off interrupts and DMA before sampling; this can be detected
by a completely blank grey screen during sampling.

The next consideration is the sampling length allowed. Some samplers will only permit sampling
into Chip memory, and will be useless for recording blocks of presenter speech which may be far
too long to fit inside what may be only 700,000 bytes of free RAM.

200 CDTV Developers Reference Manual

3.4.1 Sound:CDTV Sound

The most versatile samplers of all will record directly to hard disk and provide hours of continuous
sound. They are likely to cost between five and ten times as much as memory-only samplers, and
most of them are 16-bit samplers for the Macintosh® or PC computers.

Some samplers are mono only. This may not be a limitation for programmers, who might take a
left and than right sample from tape, with a marker blip at the start on both, chop the start of both
samples exactly to the marker, and merge them into a single stereo IFF 8SVX file by skipping the
gamp, number of bytes from the beginning of each of the merged files to jump over the blips. This
is a useful way of doubling the effective sampling time for long stereo samples in any case.

Public domain software exists to convert Macintosh® AIFF sound files to Amiga IFF 8SVX
samplpg The only significant difference is the header information in the file, and programmers may
find it convenient to make their sound replay routines read AIFF data directly.

A further option is to record sound in a studio equipped with 16-bit direct-to-disc equipment, transfer
the files to the Amiga environment, and then software convert the data to 8-bit format. Normally,
the 16-bit data will be (for Macintosh® systems) a flat binary image of the sound, in the following

format:

WORD LeftSample
WORD RightSample

A very simple conversion to mono 8-bit data without oversampling will take the form:

MOVEA.L SampleAddress,AO
MOVEA.L OutputBu f fer,A1
MOVE.L SampleLength,D1

LOOP: MOVE.W (AO),DO
LSR.W #8,DO
EOR.B #$80,DO
MOVE.B DO,(Al)+
ADDQ.L #4,AO
SUBQ.L #4,D1
BNE LOOP

assume sample in RAM
where to put 8-bit data
from file length
get left sample
shift MSB->LSB
make signed 8-bit sample
store output sample
move input pointer
decrement counter
until no more data

Normally this conversion will take place inside buffers loaded and saved from disc. The technique
will perform a crude translation, and a more sophisticated version will average several samples,
and also consider whether the LSB of the original sample is close to a value of 255, in which case
the MSB should be incremented before the shift You will notice that compared to the original, the
converted samples have heavy bass emphasis and reduced clarity in the higher frequency range.
This is to be expected, as we have just thrown away a great deal of information describing the tiny
variations of the waveform. The linearity of samplers optimized for 16-bits is very different from
the requirements of 8-bit sampling. To overcome this within practical bounds, record the original
sound in the studio with substantial top emphasis.

With both 8-bit sampling and 16-bit sampling, the benefits of using stereo are great, arguably
even greater for 8-bit sound. The difference between the left and right channels provides extra
information that can help the brain to reject noise. The zero-line quantization effects become less
significant and the perceived reality of the sound is greatly improved. Although it is more efficient
in terms of space on the disc to use mono for presenter speech, for example, if it is to be heard in
the context of CD-DA stereo sound, the quality will be muffled.

The danger zone for 8-bit sound is the threshold between low-amplitude signals and silence. Silence
may be difficult or impossible to achieve. Even under studio conditions there is always some residual
noise—breathing, heartbeats, air-conditioning, equipment hum—that will cause a sampler to waver.

Programming and CDTV Multimedia 201

3.4.1 Sound:CDTV Sound

Whenever possible, silence should be avoided for 8-bit sound. If it is feasible for a speaker to be
situated in an appropriate sound landscape such as traffic, near a burbling river, in a a cafe, etc., the
low-level background sound will enhance the value of the commentary and mask the limitations of
the audio capture.

Direct sampling of digital synthesizers may not always result in perfect results. Some synthesizers
create waveforms that have inaudible partials that become clearly audible with 8-bit samplers. Only
experimentation can determine what sounds good and what does not

Good 8-bit samplers allow some adjustment to the DC Offset level. This is the internal voltage
level that equates to zero, meaning the effective silence level of the sampler. If the DC Offset is
not perfectly set the sampler will produce (say) -3 instead of zero for silence. Extreme cases will
cause sample clipping at one or other end of the scale, and will render editing operations to reduce
noise meaningless.

One further consequence of the reduced bandwidth of 8-bit samplers is the need to keep the average
peak amplitude as high as possible. An 8-bit sampler digitizing a sample at half the maximum
volume becomes effectively a 4-bit sampler. It is very important to set the input level such that the
full range of sound is digitized, even if at a later stage the playback routines play it quietly. It is a
common mistake to think that a maximum playback volume rate (64) on the Amiga is a standard
setting, and quiet sounds should be recorded quiedy. All that happens in this case is that the audio
hardware amplifies noise rather than signal. It is far better to record ALL sound to full amplitude
and apply some discretion to the levels when playing the sound; reducing the input level degrades
the sound quality—reducing the playback volume does not.

The Amiga and CDTV incorporate hardware low-pass filters to reduce aliasing of sound samples.
Aliasing occurs when the sample rate is less than twice the frequency of the highest sound, and
results in spurious harmonics being generated that at best, sound “interesting" and worse, result in
two “beat" sounds being generated. Hie hardware filter comes in steeply at about 5kHz, causing
a (deliberate) loss of the upper partials which masks any aliasing distortion. With high-quality
samples recorded at higher speeds, the brightness of the sound may be improved by switching out
the low-pass filter. The filter is a toggle, and does not have a mechanism for setting the frequency
at which it operates.

The filter defaults to ON at system startup. It is controlled by a single bit (#1) in the register PRA
(CIA-A Peripheral Port Data Register for Data Port A), which is at address $BFE001. This is a
read-write register, and the previous contents should be preserved when writing to it Bit #1 also
controls the brightness of the front-panel LED power display, which provides a useful visual check
for the state of the filters. If bit one is set the LED is dimmed and the filter is switched off; and
vice versa:

PRA equ $BFE001

FilterOff: LEA PRA,AO
BSET #1,(AO)
RTS

FllterOn: LEA PRA,A0
BCLR #1,(AO)
RTS

When designing sound control structures it may be helpful to include a flag to set or clear the audio
filtering for this sample. When testing sounds for suitability, use high quality headphones; if no
significant aliasing is detectable on these the sample should be good for most other circumstances.

202 CDTV Developers Reference Manual

3.4.1 Sourtd.CDTV Sound

Sound Editing

The basic operations sound-editing software should provide are cut and save. Most sound editing
programs will do much more. They will allow you to change frequency, ramp (apply volume
changes), possibly add echo, and metge and filter sounds in various ways.

In the worid of 16-bit sound sampling and editing, most of the functionality of editors is dedicated
to chopping and pasting. Anything else is considered best done at the recording stage.

No sound editor has yet been written that makes a badly-conceived and badly-recorded sample
sound much better than it originally did. An exception to this is software to remove clicks and
hiss from old recordings. Many Amiga sampling software programs provide facilities such as real-
time-echo and distortion feedback as a way of emulating facilities which would, in the professional
recording domain, be properties of the recording studio’s repertoire of effects, not properties of the
tape-recorder, DAT, or direct-to-disc recording system. These effects are, of course, very useful for
processing instrument samples or brief sound bites.

Most sound editing software will allow you to set segments of the sample to silence. This may not
be quite true, however, because what the software will do is set a segment of samples to zero. If the
DC Offset or bias of the original sample was not zero but (say) -3, there is an increased chance of
pops and clicks at the entry and exit points of the zeroed segment

For multimedia title development it is very likely that you will be dealing with long samples, and
the editing software must be capable of handling samples longer than Chip memory.

Some operations, such as software resampling (where an existing sample in memory is adjusted to
a different frequency) are very processor intensive, and if a lot of material has to be processed, a
machine with a fast CPU, such as a 25 MHz 68030, will significantly speed up operations.

Most sound editing programs will have the capacity to create multi-octave IFF 8SVX files for use in
music programs as musical instruments. There may be requirements for a title where heavy loading
of pictures or animations from disc prohibits the use of spooled 8-bit sound or CD-DA. The ability
to load some instruments from the disc and then play an IFF SMUS (or other format) music track
on an interrupt system will provide an effective synchronized music track for such situations.

You Must Test On A CDTV Unit. CDTV uses a 75 frames/second interrupt system for
handling CD data. This is a significant change from a naked Amiga platform. Overloading
the VBeam interrupts with heavy code can easily cause the CDTV to become “interrupt
bound” and the run-time system should be checked on a CDTV unit before making
assumptions that it will work on a 68000 machine running with Chip memory only. The
same considerations apply to reading incoming MIDI data—a 4 bitplane 640 x 200 screen
uses enough system bandwith to corrupt serial data at MIDI speeds.

Finally, when buying a sampler and sampler software, ensure that they are compatible. Most parallel-
port samplers use similarprotocols, but not all. For example, the high quality Audio Engineer Plus™
from Ram Scan Software Pty, Ltd, is not triggered correctly by several commercially available
editors.

Programming and CDTV Multimedia 203

3.42 Sound:8SVX: Playing Samples Larger Than 128K

8SVX: Playing Samples Larger Than
128K

The Amiga’s audio hardware contains four digital-to-analog converters (DACs) capable of playing
back digital sound samples with 8-bit resolution. On the Amiga, sound samples are usually stored
in the 8SVX format which is the IFF file standard for 8-bit samples. The 8SVX standard allows
samples up to 2 Gbytes long. However, the length registers of the DACs only allow samples up to
128K bytes. In order to play back a sample larger than 128K, you break it up into smaller pieces
and send multiple requests to the audio device. The program listed below shows how to use this

technique.

The register map in Appendix B of the Amiga Hardware Reference Manual shows that all the audio
length registers are sixteen bits which gives a maximum length of65,536. However, since the audio
hardware can DMA two bytes at a time, the length register is set up to represent the word count of
the sample, not the byte count Hence, the maximum length for a sample is 2 times 65,536 or 128K

bytes.

Audio sample data in the 8SVX format is stored as a standard IFF Chunk of type BODY. The Chunk
gira is given by the field ckSize which is a LONG variable. So the maximum sample size in an IFF
Chunk is just over 2 Gbytes. Even larger samples might be possible by using a CAT or LIST. See

the IFF manual for more details.

The original Amiga, the A1000, had 512K of Chip RAM, much of which would be busy doing
graphics work, so the 128K audio sample size limit was a good design decision. Due to the memory
limits, most early Amiga samples were short sound effects less than 128K.

More recent Amigas have 1 Mbyte or 2 Mbytes of Chip RAM and most likely additional expansion
RAM. This trend will probably continue as memory prices fall making the idea of supporting 2
Gbyte samples under IFF is not so farfetched.

The program listed below shows you how to play back 8SVX samples larger than 128K on the
Amiga by breaking up the sample into smaller pieces. The program divides large samples into
sections of 51,200 bytes. The samples are sent to the audio.device using double-buffering, i.e.,
there are always two I/O requests in the queue. A WaitO. GetMsgO loop puts the program to sleep
until the current audio request finishes.

When the program wakes up, the next request in the queue begins to play immediately. While it
plays, new sample data is copied into Chip memory. The request that just ended is then reused by
placing it back in the queue and the program goes through the WaitO. GetMsgO loop again. Note
that there is nothing special about using 51,200-byte samples. Any size up to 128K would work but
51,200 is used to conserve Chip memory.

The IFF parsing used by the program is very simple. The FORM is first inspected for the file size
and the file is read into memory. A switch statement is used to cull the VHDR and BODY Chunks
from the file and pointers are set up. Other Chunks are skipped. CATs, LISTs and nested FORMs

Programming and CDTV Multimedia 205

3.42 Sound:8SVX: Playing Samples Larger Than 128K

are not supported. If the BODY Chunk has both a one-shot and continuous part, only the one-shot
part is used. Similarly, only the first octave part is played in a multi-octave sample.

The audio.device is handled in the usual way. Two AudioIO structures and a reply port are set up.
Only one audio channel is used. The channel is allocated automatically when the device is opened.
The allocation key is set to accept any of the four channels. The request priority is set to 128 so that
once we have the channel, it cannot be stolen by another task during playback.

An important part of the program is the setting of the dock constant to the proper value for PAL
and NTSC systems. The clock constant, which is used in calculating the period of an audio request,
is different on PAL and NTSC systems. To get the right value look at the DisplayFlags field of
G (xBase in the graphics.library.

By taking advantage of the audio.device’s ability to queue up multiple I/O requests, it is possible to
extend the effective sample size limit of the Amiga beyond the 128K barrier. The Amiga’s DMA
driven audio hardware can smoothly play back samples of any arbitrary size.

This program demonstrates how to play audio samples larger than 128k. An additional example
using the iffparse.library is contained in the “IFF Source Code” section of Appendix A of the 2.0
Amiga ROM Kernel Reference Manual: Devices. It is called Play8SVX.c.

/*
* 8SVX example - double buffers >128K samples
*

* Compile with SAS C 5.10 lc -bl -cfistq -v -y -L
*

* Run from CLI only
*/

#include <exec/types.h>
#include <exec/memory.h>
♦include <devices/audio.h>
#include <dos/dos.h>
♦include <dos/dosextens.h>
#include <graphics/gfxbase.h>
♦include <iff/iff.h>
♦include <iff/8svx.h>

♦include <clib/exec_protos.h>
♦include <clib/alib_protos.h>
♦include <clib/dos_protos.h>
♦include <clib/graphics_protos.h>

♦ include <stdlib.h>
♦include <stdio.h>

♦ifdef LATTICE
int CXBRK(void) { return (0); } /* Disable SAS CTRL/C handling */
int chkabort(void) { return(0); } /* really */
♦endif

♦define VHDR MakelD('V#,'H','D','R')
♦define BODY MakelD('B','O','D','Y')
♦define MY8S MakelD('8',* S','V','X')

void kill8svx(char *);
void kill8(void);

/*-*/ /* These globals are needed */
/* G L 0 B A L S */ /* by the clean up routines */
/*-*/

struct IOAudio *AIOptrl, /* Pointers to Audio IOBs */
*AIOptr2,
*Aptr;

struct Message *msg; /* Msg, port and device for */
struct MsgPort *port, /* driving audio */

*portl,*port2;
ULONG device;

206 CDTV Developers Reference Manual

3.42 Sound:8SVX: Playing Samples Larger Than 128K

UBYTE *sbase,*fbase; /* For sample memory allocation */
ULONG fsize,ssize; /* and freeing */

struct FileHandle *v8handle; .
UBYTE chanl[] = { 1); /* Audio channel allocation arrays */
UBYTE chan2[j - (2 };
UBYTE chan3[] » (4);
UBYTE chan4[] ® (8 };
UBYTE *chans[] =* {chanl,chan2,chan3,chan4};

BYTE oldpri,c; /* Stuff for bumping priority */
struct Task *mt=0L;

struct GfxBase *GfxBase ■ NULL;

f*-*/
/* MAIN */
/*-*/
void main(int argc,char **argv)
{
/*-*/

/♦LOCALS*/
/*-★/

char *fname; /* File name and data pointer*/
UBYTE *p8data; /* for file read. */
ULONG clock; /* Clock constant */
ULONG length[2]; /* Sample lengths */
BYTE iobuffer[8], /* Buffer for 8SVX header */

♦psample[2]; /* Sample pointers */
Chunk *p8Chunk; /* Pointers for 8SVX parsing */
Voice8Header *pVoice8Header;
ULONG y, rd8count,speed; /* Counters, sampling speed */
ULONG wakebit; /* A wakeup mask */

/*-*/

/* CODE */
/*-*/

/*-*/

/* Check Arguments, Initialize */
/*-*/

fbase»0L;
sbase=0L;
AIOptrl*OL;
AIOptr2=OL;
port*0L;
portl=0L;
port2=0L;
v8handle«0L;
device*lL;

if (argc < 2)
{
kill8svx("No file name given.\n");
exit (1L);
}

fname=argv[1];

/*-*/

/* Initialize Clock Constant */
/*-*/
GfxBase*(struct GfxBase *)OpenLibrary("graphics.library",OL);
if(GfxBase*=OL)

{
puts("Can't open graphics library\n");
exit(1L);
}

if (GfxBase->DisplayFlags & PAL) clock=3546895L; /* PAL clock */
else clock=3579545L; /* NTSC clock */

if(GfxBase)
CloseLibrary((struct Library *) GfxBase);

/*-*/

/* Open the File */
/*-*/

v8handle» (struct FileHandle *) Open(fname,MODE_OLDFILE);
if(v8handle==0)

Programming and CDTV Multimedia 207

3.42 Sound:8SVX: Playing Samples Larger Than 128K

{
kill8svx ("Can't open 8SVX file.\n");
exit(1L);
}

/*-V
/* Read the 1st 8 Bytes of the File for Size */
/*-*/
rd8count=Read((BPTR)v8handle,iobuffer,8L);
if(rd8count*«-l)

{
kill8svx ("Read error.\n");
exit(1L);
)

if (rd8count<8)
{
kill8svx ("Not an IFF 8SVX file, too short\n
exit(1L);
}

")

/*---*/
/* Evaluate Header */
/*-*/
p8Chunk=(Chunk *)iobuffer;
if(p8Chunk->ckID != FORM)

{
kill8svx("Not an IFF FORM.\n");
exit(1L);
}

/*-*/

/* Allocate Memory for File and Read it in. */
/*-*/

fbase= (UBYTE *)AllocMem(fsize=p8Chunk->ckSize , MEMFJPUBLICIMEMF CLEAR);
if(fbasessO)

{
kill8svx("No memory for read.\n");
exit (1L);
)

p8data=fbase;

rd8count=Read((BPTR)v8handle,p8data,p8Chunk->ckSize) ;
if(rd8count*s-l)

kill8svx ("Read error.\n");
exit(1L);
>

if (rd8count<p8Chunk->ckSize)
<

kill8svx ("Malformed IFF, too short.\n");
exit(1L);
}
/*-*1

/* Evaluate IFF Type */
/*-a/

if(MakeID(*p8data, *(p8data+l) , *(p8data+2) , *(p8data+3)) !« MY8S)
{
kill8svx("Not an IFF 8SVX file.\n");
exit(1L);
)

/*-★/

/* Evaluate 8SVX Chunks */
/*-V

p8data=p8data-*-4;

while (p8data < fbase+fsize)
{
p8Chunk*(Chunk *)p8data;

switch (p8Chunk->ckID)
(
case VHDR:

/*---*/

/* Get a pointer to the 8SVX header for later use */
/*--*/

208 CDTV Developers Reference Manual

3.4.2 Sound:8SVX: Playing Samples Larger Than 128K

pVoice8Header*(Voice8Header *)(p8data+8L);
break;

case BODY:

/*
/*
/*
/*

Create pointers to 1-shot and continuous parts
for the top octave and get length. Store them.

■*/

*/
*/

■*/
psample[0] * (BYTE *)(p8data + 8L);
psample[1 j * psample[0] + pVoice8Header->oneShotHiSample
length[0] * (ULONG)pVoice8Header->oneShotHiSamples;
length[1] * (ULONG)pVoice8Header->repeatHiSamples;
break;

s;

default:
break;

}

/* end switch */

p8data = p8data + 8L + p8Chunk->ckSize;

if (p8Chunk->ckSize&lL == 1)
p8data++;

}

/★ play either the one-shot or continuous, not both */
if (length[0]==0)

y=i;
else

y=0;

/*-*/
/* Allocate chip memory for samples and */
/* copy from read buffer to chip memory. */
/*-*/

if (length [y] <=102400) ssize=length [y] ;
else ssize=102400;

sbase*(UBYTE *)AllocMem(ssize , MEMF_CHIP | MEMF_CLEAR);
if(sbase==0)

{
kill8svx(nNo chip memory.\nn);
exit (1L);
)

CopyMem(psample[y],sbase,ssize);
psample[y]+=ssize;

/★-*/

/* Calculate playback sampling rate */
/*-*/

speed = clock / pVoice8Header->samplesPerSec;

/*-*/

/* Bump our priority */
/*-*/

mt=FindTask(NULL);
oldpri=SetTaskPri(mtr 21);

/*-*/
/* Allocate two audio I/O blocks */
/*-*/

AlOptrl*(struct IOAudio *)
AllocMem(sizeof (struct IOAudio),MEMF__PUBLIC | MEMF_CLEAR) ;

if(AIOptrl==0)
{
kill8svx("No 10 memory\n");
exit(1L);
)

AIOptr2=(struct IOAudio *)
AllocMem(sizeof(struct IOAudio),MEMF_PUBLICIMEMF_CLEAR);

if(AIOptr2==0)
{
kill8svx("No IO memory\nn);
exit (1L);
}

Programming and CD7V Multimedia 209

3.42 Sound:8SVX: Playing Samples Larger Than 128K

/*-*/

/* Make two reply ports */
/*-*/
portl*CreatePort(0,0);
if(portl**0)

{
kill8svx("No port\n");
exit(1L);
}

port2*CreatePort(0,0);
if(port2=*0)

{
kill8svx("No port\n");
exit(1L);
)

c=0;
while(device!=0 £& c<4)

{
/*-*/

/* Set up audio I/O block for channel */
/* allocation and Open the audio device */
/*-*/

AI Opt r 1 - >i oa_Reque s t . i o_Me s s age. mn_Repl yP o r t
AIOptrl->ioa_Request.io_Message.mn Node.In Pri
AIOptrl->ioa_AllocKey
AIOptrl->ioa_Data
AIOptrl->ioa_Length

portl;
127; /* No stealing! */
0;
chans[c];
1;

device=OpenDevice("audio.device",0L,(struct IORequest *)AlOptrl,0L);
C++;

}
if(device!=0)

{
kill8svx("No channel\n");
exit(1L);
}

/*---*/

/* Set Up Audio IO Blocks for Sample Playing */
/*-*/
AIOptrl->ioa_Request. io_Command =CMD_WRITE;
AIOptrl->ioa Request.io Flags *ADIOF PERVOL;
/*-*/

/* Volume */
/*-*/
AIOptrl->ioa_Volume=60;
/*-★ /
/* Period/Cycles */
/*-*/

AlOptrl->ioa_Period = (UWORD) speed;
AIOptrl->ioa_Cycles =1;

*AIOptr2 » *AIOptrl; /* Make sure we have the same allocation keys, */
/* same channels selected and same flags */
/* (but different ports...) */

AIOptrl->ioa_Request.io_Message.mn_ReplyPort * portl;
AIOptr2->ioa_Request.io_Message.mn_ReplyPort « port2;

/*-*/
/* Data */
/*-*/
AIOptrl->ioa_Data = (UBYTE *)sbase;
AIOptr2->ioa_Data »(UBYTE *)sbase + 51200;

/*-*/

/* Run the sample */
/*-*/

if (length [y] <=102400)
{
AIOptrl->ioa_Lengtha*length [y] ; /* No double buffering needed */
BeginIO((struct IORequest *)AIOptrl); /* Begin the sample, wait for */
wakebit=0L; /* it to finish, then quit. */
wakebit=Wait (1 << portl->mp SigBit);
while((msg=GetMsg(portl))=»0)7};
}

210 CDTV Developers Reference Manual

3.42 Sound:8SVX: Playing Samples Larger Than 128K

else
{
length[y]-=102400;
AIOptrl->ioa_Length=51200L;
AIOptr2->ioa_Length=51200L;
BeginIO((struct IORequest *)AIOptrl);
BeginIO((struct IORequest *)AIOptr2);
Aptr»AIOptrl;
port=portl;

/* It's a real long sample so */
/* double buffering is needed */

/* Start up the first 2 blocks... */

/* Set the switch... */

while (length [y] >0) ^ ,
{ /* We WaitO for one 10 to finish, */
wakebit=Wait (1 << port->mp SigBit); /* then reuse the IO block & queue */
while ((msg=GetMsg (port))»»0)1); /* it up again while the 2nd IO */

/* block plays. Switch and repeat. */

/* Set length of next IO block */
if (length [y] <=51200) Aptr->ioa_Length=length [y) ;
else Aptr->ioa_Length=51200L;

/* Copy sample fragment from read buffer to chip memory */
CopyMem (psample [y], Aptr->ioa_Data, Aptr->ioa_Length) ;

/* Adjust size and pointer of read buffer*/
length [y] -=Aptr->ioa_Length;
psample[y]+=51200;

BeginIO((struct IORequest *)Aptr);

if(Aptr==AIOptrl)
{Aptr=AIOptr2; /* This logic handles switching */
port=port2; /* between the 2 IO blocks and */

} /* the 2 ports we are using. */
else (Aptr=AIOptrl;

port=portl;
)

}

/*-*/

/* OK we are at the end of the sample so just wait */
/* for the last two parts of the sample to finish */
/*----—---—------*/
wakebit=Wait (1 << port->mp SigBit);
while((msg=GetMsg(port))==0)1);

if(Aptr==AIOptrl)
(Aptr=AIOptr2;
port=port2;

}
else (Aptr=AIOptrl;

port=portl;
)

/* This logic handles switching */
/* between the 2 IO blocks and */
/* the 2 ports we are using. */

wakebit=Wait (1 << port->mp_SigBit) ;
while((msg=GetMsg(port))==0){};

}

kill8();
exit(0L);
}

/*-*/

/* Abort the Read */
/*-*/

void
kill8svx(kill8svxstring)
char *kill8svxstring;
{
puts (kill8svxstring);
kill8();
}
/*-*/

/* Return system resources */
/*-*/

void
kill8()

Programming and CDTV Multimedia 211

3.42 Sound:8SVX: Playing Samples Larger Than 128K

{
if(device ==0)
if(portl !=0)
if(port2 !*0)
if(AlOptrl!»Q)
if(AIOptr2!=0)

if(mt!*0)

if(sbase !=0)
if(fbase !=0)
if(v8handle!«0
}

CloseDevice((struct IORequest
DeletePort(portl);
DeletePort(port2);
FreeMem(AlOptrl,sizeof(struct
FreeMem(AIOptr2,sizeof(struct

SetTaskPri(mt,oldpri);

FreeMem (sbase, ssize);
FreeMem(fbase,fsize);
Close((BPTR)vShandle);

)AlOptrl);

IOAudio));
IOAudio));

212 CDTV Developers Reference Manual

3.43 Sound:Producing High Quality Digitized Multilingual Narrative Audio

Producing High Quality Digitized
Multilingual Narrative Audio

Overview

With a storage capacity of over 660 megabytes, Commodore Dynamic Total Vision (CDTV)

naturally lends itself to programs which incorporate digitized audio narratives. These digital audio

cuts can be used to interact at a high level with the user in his own language as he moves through

the application, offering commentary, conversation, information and help which will enhance the

CDTV experience.

Since CDTV will be marketed in European and Japanese markets, the developer should consider

providing audio narration in multiple languages. All of the applications planned or completed for

CDTV will contain digital audio narratives in English, German, Japanese, French, Spanish and

Italian.

The CDTV title. Classic Board Games, provided an opportunity to come to terms with the problems

of producing and maintaining relatively high quality digitized audio narrative. It is the purpose of

this paper to share this knowledge with other CDTV developers, so that a high level of audio quality

might be maintain^ in all CDTV applications. High quality audio should present a more appealing

image to the consumer and lead to more sales of CDTV units and software.

Digital Sampling Facts and Figures

It is suggested that the CDTV software developer be familiar with the Audio Device chapter of

Amiga ROM Kernel Reference Manual: Libraries and Devices, and the Audio Hardware chapter in

the Amiga Hardware Reference Manual.

Rate, Time and Memory are the three factors that need to be considered when playing a digital

sample.

• Rate indicates the number of 8-bit samples per second that comprise a digital cut The higher

the sampling rate, the higher the quality of sound produced.

• Time is the length of a given digital cut in seconds.

• Memory is the number of bytes required to store the sample in RAM.

Programming and CDTV Multimedia 213

3.43 Sound:Producing High Quality Digitized Multilingual Narrative Audio

Producing High Quality Digitized Narrative CDTV Audio Cuts

Some magic numbers to consider

• The Amiga (CDTV) is limited to playing 28867 eight bit samples per second from each of four
audio channels, two of which will play from the right audio port and two from the left audio
port, so that stereo output may be produced.

• NTSC and PAL systems possess different clock values that must be considered during playback:
3S79S4S for NTSC, and 3546895 for PAL. The dock value needs to be taken into account
before playing back any audio samples.

• The maximum size of a sound sample is 128K (131072) bytes. Samples longer than this must
be spliced together using double buffering techniques described in the “8SVX: Playing Samples
Larger Than 128K” article.

• The highest frequency you can record is determined by the sampling rate divided by 2.

Scripting

The first phase in producing multilingual digital samples is scripting. The script needs to be written
with the Magic Numbers mentioned above in mind. For instance in scripting Classic Board Games,
tests showed that two 128K sound buffers should be used in the program. A sampling rate of 16273
samples per second because it would provide a maximum of eight seconds of continuous sound
from each buffer, and because it allowed frequencies up to 8000 KHz., which would be adequate to
reproduce the voices of all the male narrators who were to be recorded.

Had female narrators been used, the sampling rate would have had to be increased to allow for the
higher frequencies produced by the average female voice.

After the script is written, it is divided into passages that can be spoken in seven seconds or less,
making the breaks at punctuation points whenever possible. Also, each passage is given a slate
code.

If a passage is short, then it is given a single slate code, while longer passages might require 2, 3
or 4 slate codes. It is necessary to break up the passages, because there is often no blank space in
a spoken sentence which can be used to divide passages. Short passages are also easier to mix and
order into different combinations within the software.

Passages of a large script have to be translated, handled and processed in multiple languages, some
of which (Japanese) are written with non Greco-Roman alphabets. The slate codes are used for
passage identification, and are later used as file names for each digital sample. For example, file
D04E would contain the English sample, file D04G the German, file D04J the Japanese, and so on.

214 CDTV Developers Reference Manual

3.43 Sound:Producing High Quality Digitized Multilingual Narrative Audio

Script Excerpt from Classic Board Games

D-4 "The New Game option begins a game,"

D-4 _____

{pause}

D-5 "while the Continue option resumes the game that was just completed."

D-5 --—-

{pause}

D-6 "The Replay option automatically re-plays the game that was just
complete."

D-6 -

How Long is a Pause? The {pause}is a one second hesitation on the part of the narrator
during the taping session.

Translations

The translators were asked to translate the script considering the following stipulations.

• The start of each passage is designated by a boldfaced, italicized slate code (e.g., D-4), which
is the passage ID.

• Write the translation of a passage on the lines immediately following the passage (two lines for
each slate code). Each translated passage following a slate code should take no more than 7
seconds to speak.

Sound Studio: The Taping Session

The Classic Board Games crew was fortunate to have located a sound engineer who specializes
in taping vocalizations—including multilingual vocalizations, and who has a studio at his disposal
that is designed to record individual dialogue. A good sound engineer will assure your recordings
are of high quality.

The digital samples played on the Amiga from the first taping session tended to have too much bass,
perhaps due to the lack of overtones above the 8000 KHz level. To compensate for this, a low end
80 KHz cutoff was used on the studio board to compress the sound as it was laid on the tape. While
it is also possible to implement high end compression, the sound engineer advises against it, as it
tends to flatten the tones.

Programming and CDTV Multimedia 215

3.43 Sound.Producing High Quality Digitized Multilingual Narrative Audio I

Signal strength should be carefully monitored to maintain a constant volume level. Scaling the
sample in the computer to adjust the volume level between samples, lowers the quality of the
sample. Adjustments in all aspects of audio are best made in the studio.

Volume level is important because digitized passages might later be played in any order within the
application. Narrators tend to fluctuate their speaking volume from page to page when reading as
their energy level varies. Narrators also tend to vocally project more at the start of a page than at
the end of a page, and during series of monotonously repetitive passages, vocal projection fades
(perhaps from boredom). When any of these situations occur, retakes are necessary. Otherwise
when passages are played in any order other than that at which they were recorded, volume variations
will be apparent.

Keeping a constant distance between the mouth and microphone of the narrator helps maintain

an even volume level. Some narrators may tend to dip their head when reading to the bottom of
the page, which inadvertently increases mouth to mike distance. Advise the narrator to read with
his eyes, or move the paper upwards, as he reads down the page so mouth to mike distance is
maintained.

The sound engineer recommends that each narrator wear a headset to monitor his own voice level
as he speaks. This seems to be an excellent idea. One of the Classic Board Games narrators did not
wish to wear the headset and there was more trouble maintaining a constant volume level with him
than with any of the other narrators.

During recording it is necessary to listen carefully for any hesitation or fluctuations in the narrator’s
voice. Different pronunciations of the same word from one passage to another must also be guarded
against, as in "you say tomahto and I say tomayto". This can be exceedingly difficult to monitor
when the narration is in a foreign language.

Voice intensity, crispness, clarity, etc., should be monitored carefully. When in doubt, do a retake.
Ask foreign language narrators to also monitor themselves and request a retake whenever they ate
not satisfied with their performance. A script reader should also be following the narrator’s words,
checking for any errors, variations, or inadvertently deleted words.

You may wish to record multiple takes of each passage, so that you can choose the best one later.
It seems that the first take is generally better than subsequent takes, unless one of the problems
mentioned above dictates a retake. Multiple takes are also going to proportionately increase the
time and cost of the session. If you decide on single takes, have the engineer rewind the tape before
doing a retake so that only good takes reside on the recording. This will dramatically decrease the
time spent digitizing each cut

In the Classic Board Games taping sessions, the sound engineer inserted an even tone between each
take, which was later helpful during the digitizing process. These tones are recognizable on the
sound sample graph and act as both visual and auditory markers between cuts.

216 CDTV Developers Reference Manual

3.43 Soimd.Producing High Quality Digitized Multilingual Narrative Audio I

An excerpt from one of the Classic Board Games taping sessions went as follows:

Engineer.
{tone on tape)
{voice on tape) "AT

Narrator. {voice on tape)
{tone on tape)

reads A01 text

Engineer {voice on tape) MA2, A3, and A41

Nanator {voice on tape) {reads A02 text)
{pause}
{reads A03 text}
{pause}
{reads ACM text}
{tone on tape}

Engineer {voice on tape) "Bl”

Narrator {voice on tape) reads B01 text

{tone on tape)

All cuts should be timed as the recording is made. Whenever a given cut takes longer than 7
seconds, retake the cut with the narrator picking up the pace a bit During the Classic Board Games
recording, only German and Italian required the occasional time related retake. For what it's worth,
the following table indicates the relative sizes of all narrative cuts as translated in each language in
Classic Board Games. This information may be of use, if you are trying to pre-calculate disk space
requirements for an application with a large amount of audio data.

Fnglish 14.0 MBytes German 19.0 MBytes
Japanese 13.7 MBytes French 15.0 MBytes
Spanish 16.0 MBytes Italian 18.6 MBytes

Digitizing

A FutureSound stereo digitizer in monaural mode was used to digitize narrative cuts. Any of the
digitizers on the market will probably work as long as they have a gain control. You may digitize
in stereo, but keep in mind that this will require twice as much space to store the files and double
the loading time.

As previously mentioned, all adjustments to the sound cuts should be done in the studio. It is
recommended that no adjustments be made in equalizing tones, noise filtering, or whatever between
tape player and digitizer. Further, you should avoid using Dolby because it seems to have the
counterproductive effect of inducing noise into the digitized sample rather than removing it

The best results seem to be produced by connecting the Tape Out jacks on the tape machine directly
to the digitizer via a shielded cable. Anything you put between the recorded source and the digitizer
may effect the sample adversely.

Programming and CDTV Multimedia 217

3.43 Sound:Producing High Quality Digitized Multilingual Narrative Audio I

Use the gain control on the digitizer to adjust the input level. Setting the gain somewhat high seems
to produce the best results, possibly because it minimizes the background noise level. This does
produce some minor clipping, however, which will have to be repaired either manually or by means
of software.

A clip is a spot in the sound sample where the value of the sound exceeds the maximum value of
+127 and produces a spike value of -128, that is audible as a popping noise. Minimal clipping can
be repaired by converting the -128 spike to +127 wherever it occurs. At a sampling rate of 16273,
repaired clips of less than 3 consecutive bytes sound perfectly normal when played.

Whether you record a tape or DAT, background noise, or hiss, will be present, but it should be
minimal. The best you'll probably be able to do is maintain a background noise level of 1 in all
bytes within a blank space of a sample where no one is speaking (a 0 would be no noise). Such a
low level hiss is audible only when listening to a digitized sample with treble set high and base set
low. Under normal tone settings blank space bytes containing a 1 are not audible.

Digitize as many seconds of audio as you can, given the memory limitations of your system. Most
digitizer software will allow FAST memory to be used when sampling, which will allow large
samples to be grabbed from the recording. You may want to keep your samples in Chip memory
so that playback and editing can be done within the environment in which the final product will be
played. Also, using a headset when digitizing and editing narration allows you to carefully study
each sample for imperfections.

When marking the starting point of a sample cut from a larger sampling, be sure not to cut off any
bytes that should be included in the sample. Being able to view a graphical display of each sample is
imperative, especially in zoom mode, as it will allow you to see faint values that you may otherwise
miss. Particularly with foreign language cuts, listen carefully to the playback while reading the text
to be sure that all initial letter sounds are present

A good suggestion is that punctuation spacing be included at the end of each sample cut so that the
playback routine within the application does not have to maintain delay values for each cut For
example, in English, a period may require 2.0 seconds of blank space, a comma .8 seconds and a
semicolon 1.25 seconds. If this blank space is appended to cuts ending in punctuation marks, the
playback routine can just load and play samples consecutively. Be aware, however, that punctuation
blank time varies with each narrator, the rate at which the sample is read, and also the language
spoken. Punctuation blank times should be modified to the speaking pace of the narrator and the
language.

Finally, it goes without saying that you must be extremely careful to save each narrative cut under
the correct file name in the appropriate directory. The slate system outlined in this paper was
designed to minimize the error potential from this process. But with potentially hundreds of cuts in
each language, the odds of errors occurring are increased, so caution is still advised.

Turning Off the Audio Filter

It is advisable to turn off the audio cutoff filter when narration is played within your program.
TViming off this filter will allow higher frequency overtones (up to 15 KHz) to be heard. TTie effect
of turning off the filter on a narration cut is to produce a clearer, less muffled tone. Dan Schein
wrote an excellent Amiga Mail article ("Amiga Audio Cutoff Filter", Volume One, Page VI-23) on
the subject that is recommended reading.

218 CDTV Developers Reference Manual

3.43 Sound'.Producing High Quality Digitized Multilingual Narrative Audio I

Conclusion

It is hoped that this paper will facilitate the production of a minimum quality standard in digitized
narration in all applications written for CDTV. It is assumed that, as we all gain experience in writing
CDTV applications, better methods of producing CDTV digitized narration will be developed.

Of course, the highest quality sound will always be CD Audio played directly from the disc. With
only 72 minutes of CD Audio available on a disc, however, this method of producing should would
limit an application supporting six languages to but 12 minutes of audio per language. With CD
Audio it is also impossible to access the disc to load graphics or animators while CD Audio is
playing. (Except by using special techniques. Subcode data may be useful in some applications for
overcoming this.) It is, therefore, very likely that digitized audio will continue to be an important
feature in many future CDTV applications.

Programming and CDTV Multimedia 219

3.4.4 Sound.CDTV Audio Cookbook

CDTV Audio Cookbook

Lead In

What follows is a brief account of the main factors involved in producing a successful Mixed Mode
CD. It comes from some very late nights and some very inelegant programming on the Music
Maker project It is not definitive. Every programmer will have a specific need and a specifically
economical route to it All code here is in pseudo-code, because Amiga programs are now written
in variety of languages—C, assembler, Amos, Modula-2, and Oberon (the first efficient Object
Oriented language available on the Amiga.) This article assumes that the reader is familiar with
the use of the Amiga devices. If not, it is highly recommended to learn them before committing a
product to a very expensive circle of plastic.

Audio Play

A Mixed Mode CD has up to 99 tracks on it. A track is really only a logical division of the total
CD data into subsections. Although the structure of sectors in a data track is different from that in
a CD-DA track, there is no need to give it even a second’s thought

On a Mixed Mode disc, track one is always data—most times this is an AmigaDOS image sitting
inside the standard CD-ROM file system known as ISO 9660. Playing track one on an audio player
can produce anything from an impromptu KraftWerk experience to speaker cones vanishing down
the street The other tracks can, of course, be anything from a few seconds of music to a complete
Mahler symphony, but effectively, the disc space can be thought of in terms of time.

A CD typically contains 72 minutes of time. That time can be subdivided into data time and
audio time. Given that data gets eaten at the rate of 1S0K per second, a minute’s worth of time is
approximately 60*150000 bytes or 9,000,000 bytes. Assuming that you have 53 minutes of audio,
you can see that you are left with about 19 minutes or approximately 170 megabytes for your data
track. Simply put, more audio means less data and vice versa.

There are at least two commands for playing CD-DA tracks using the cdtv.device. One is the
PLAYTRACK command and the other is the PLAYMSF command. PLAYTRACK is used for
most purposes because it doesn’t matter if your track wanders about the disc in various iterations of
the development loop. If it’s track 8 it will always be track 8.

PLAYMSF is used for precise start times. The PlayTrack example in the CDTV Developers’ notes
gives a perfect example of using PlayMSF.

To play a track, whether using PLAYTRACK or PLAYMSF, you do the following steps:

1. Create a message port.

2. Create an I/O request structure.

3. Open the cdtv.device.

Programming and CDTV Multimedia 221

3.4.4 Sound:CDTV Audio Cookbook

4. Fill in the I/O request structure with the appropriate values:
a) set the io-Command field to either PLAYTRACK or PLAYMSF
b) set the io-Offset field to the starting track for PLAYTRACK

and the starting time for PLAYMSF
c) set the io-Length field to the stopping track for PLAYTRACK

and the ending time for PLAYMSF
d) set the io-Data field to 0

5. Either DoIOO or SendlOO the I/O request structure.

Terminating Conditions

The audio track will play until it finishes if you don't stop it If you used the synchronous DoIOO
to send the command, you will not regain control till the track is done, so there is no way to stop a
track that is playing. That's easy enough. The complexity comes in when you use the asynchronous
SendlOO to send the command. In that case, you do have the option of stopping it before the
ending track or time you specified in the I/O request

There are two ways of stopping a track. You can either AbortlOO the I/O request or send the
STOPTRACK command and then WaitlOO the intial request. Regardless of the method you use,
you must know whether the I/O request is still active before attempting to stop it otherwise you'll
create some fireworks. You do this by using ChecklOO.

Making certain that an I/O request is active before attempting to stop it is called protective coding.
Check that you have closed any files before playing the audio (there could be a file read still pending)
and check that you have stopped the track before doing anything involving the CD audio or file
system. It's a very easy trap to get into and it has serious consequences.

If you take those steps, playing audio tracks is easy—providing that the track exists, of course.

Track Checking

Normally, you will know how many tracks you have on a disc, but suppose you have a condition
where the user can pop the CDTV disc and stick an ordinary CD-DA disc into the drive. In that
case, you need to know if the disc is valid for your application and if so, how many tracks it has.

You can determine this using two commands, ISROM and TOC. The ISROM command tells you
if the disc is a CD-ROM and the TOC command returns the disc table of contents in two formats,
logical sector number and time.

If a user inserts a CD-ROM disc when you expect a CD-DA disc and you don't use ISROM to
determine the type of disc, you could end up playing track ONE (the data track of a CD-ROM) and
chew someone’s loudspeakers. It’s always a good idea to use ISROM whenever your application
uses more than one disc.

Sending the TOC command specifying track ZERO tells you the first and last track, from which
you can limit the number of tracks the user can attempt to play. It’s arguably a user’s own fault if
he starts popping discs during a normal program run when that’s outside the rules of the game, but
you have to make things idiot-proof. Remember also that the CD-DA side of the system and the

222 CDTV Developers Reference Manual

3.4.4 Sound.CDTV Audio Cookbook

file system side are sharing the same drive, so if he does pop the disc you’d better check that your
disc is back in before even thinking about opening a file.

A crude method for doing this: if you do a TOC call and find that ISROM returns TRUE and the
disc has the right number of tracks, assume it’s the right one. Remember, we did say crude.

A more sophisticated version: do the same as above, but also check for your manufacturer’s ID and
product ID. This is the safest course of action.

PLAYMSF

The PLAYMSF command plays from one time to another time. This is where you face the great
dilemma...where are the tracks?

To keep the software update and test cycle to the minimum you must work closely with the CD
manufacturers. There is a big difference between mastering what are essentially Amiga programs
on a CD and mixed mode discs. If you are going to synchronize anything to an audio track, it is
vital that the tracks not drift between cycles in the development And they can. Go for a good
manufacturer because they will create a master tape that leaves the tracks (after initial editing, see
later comments) starting and stopping at almost exactly the same frame. Ask for your disc to be laid
out such that the audio tracks are at the end, leaving a large data track space into which your updated
data and program images will be placed. If you don’t do this, you will suffer from wandering track
syndrome which can be expensive.

For many applications, it is appropriate to create a CD with the audio tracks placed at the end and
nothing in track ONE, which could be several minutes of silence. In other words, if you leave a
big enough hole for your data you can go through many iterations of replacing the data track whilst
leaving your audio in exactly die same physical space on the disc.

You can find out where your tracks are by (a) reading the TOC or (b) getting a printout from the
manufacturer. These give you a crude idea. You can then experiment with your program (or, to be
more sensible, a control file) and set an exact time to start each track from. You are now independent
of the disc layout, lead-ins, any silence from the transfer from DAT or analog tape. Unfortunately,
you are also crucially vulnerable to wandering tracks.

The PLAYMSF command uses the MSF format As it is listed in the cdtv.h include file, the MSF
format looks a bit obscure with all those shifts, but what it boils down to is simple: a LONG (32
bit) word with the three least significant bytes holding M (minutes), S (seconds) and F (frames), or
to put it in a civilized language:

TYPE MSF=RECORD dummyaninutes,seconds,firames:BYTE END;

The dummy is there simply to force the right-jusdficadon The cdtv.h information is simple and
accurate about this. Set up the I/O request, SendlOO or DoIOO it, and enjoy the speed at which
the track comes up.

Nothing in life is simple, so there are a few potential nasties here. As it says in the cdtv.fi file, just
aborting a PLAYMSF command is not enough because the disc light stays on and the laser is still
active. Here is an example where you must use the STOPTRACK command even if the track has
in fact stopped, unless you want to pretend you’re doing full motion video of course, but then, who
isn’t (pretending)?

Programming and CDTV Multimedia 223

3.4.4 Sound:CDTV Audio Cookbook

How Do I Know When It Has Started?

It’s unwise to assume that the system will respond instantly just because a command is issued,. The
CD system has a lot of indetenninancy in it For example, the laser may have been repositioned at
the far point on the CD. For tight synchronization to a CD-DA track, you must therefore wait until
the audio is definitely playing. This is a case for a tight loop using the CDTV_QUICKSTATUS
command to cdtv.device. For audio purposes we are only really interested in one bit in the longword
returned in the IOStdReq structure’s io—Actual field—the “audio" bit, defined as QSB-AUDIO, or
bit 2. You set up the IOStdReq with the io-Command field containing CDTV_QUICKSTATUS,
DoIOO the request, and get lots of bits back in the io-Actual field.

For tight synchronization, the method will look a something like this (in Modula-2), assuming that
the CDTV-FRAMECALL has been used to install a little code section that increments the variable
“timeCount" 75 times/sec:

CONST TooLong=150;
VAR x:INTEGER;
(* etc *)

timeCount:=0;
REPEAT
x:=DoIO(ADR(MyQuickRequest));
UNTIL (

(x#Q) OR
(timeCount>TooLong) OR
(QSB_AUDIO IN LONGBITSET(MyQuickRequest.io_Actual)

);

In other words, if bit 2 (QSB-AUDIO) is set, audio is issuing forth in all its glory from the CD.

At this point we can test x and timeCount and if they are both looking healthy, we can now
synchronize to the audio by setting timeCount:=0, and assume that the audio is running and so is
our clock.

If you don’t need this kind of frame-locked accuracy, this type of coding is a little heavy. If you are
synchroniaing an animation or a MIDI replay to some audio, it is vital to know when your command
to play some audio is up and running.

When a title allows the users to pop CDs and insert any CD they wish, the time-out will be essential.
When this call fails you may be facing a massively corrupt CD, no CD at all, a data track, or a
non-existent track; this failure may be a good time to read the Table Of Contents on the CD and
take appropriate action.

Synchronizing to the CD-DA

The track is running, now what? You have a file, say from a music sequencer, in MSF format,
starting from an offset of 0:0:0 into the track (improbable, but you get the point)—how do you lode
it to the CD-DA?

The best way is to use the FRAMECALL command. This tells the system to activate a handler
function every time a new "frame" of audio data is sent to the audio output CD frames occur 75
times per second. Unfortunately, like the habit of driving on the "wrong" side of the road, SMPTE
timings come in various national flavors. SMPTE frame rates can be (normally) 24,25 or 30 frames
per second. It’s up to you, or more accurately, up to your parents.

224 CDTV Developers Reference Manual

3.4.4 Sound.CDTVAudio Cookbook

Getting 25 frames a second is easy—your handler code counts in threes and updates a dock in MSF
format remembering that the frames will then run from 1-25, after which you increment seconds.
The calculate for 24 or 30 frames is nastier and is left to you. The danger point here is that the
FRAMECALL handler happens on the supervisor stack. You had better not get fancy with it! Just
increment a master clock MSF variable or CauseO a software interrupt

The gotcha factor in the FRAMECALL handler is that you SendlOO the I/O request and do nothing
else with it until you want to kill it, when you AbortlOO it and wait until its terminated.

Having set this up, you are now in a position to check your internal data structures against the master
clock which is being incremented by the framecall and do things as and when required.

If you need to use more precise timing, you can use one of the CIA timers for microsecond precision
(taking PAL/NTSC into account) and maybe adjust a fudge factor by periodically checking the
framecall result against expectations.

One Timer Does Not Fit All. System use of the CIA timers varies under different versions
of the operating system and even changes dynamically under 2.0 (the 2.0 timer.device
attempts to accommodate any application that properly tries to allocate any CIA timer).
You should always attempt to allocate one of die CIA timers instead of hardcoding in a
particular timer. See the cia.resource section of the “Resources” chapter in the 2.0 Amiga
ROM Kernel Reference Manual: Devices for an excellent example of allocating and using
an available CIA timer.

Generally, it’s easier to pre-convert standard SMPTE timings into 75 frame/second CD frame rates.
In fact, as a general rule on CDTV, it’s better to pre-compute everything you can because you have
loads of data space to store the computations as opposed to having a slow processor running in
Chip RAM do the computations at run-time. (For this reason, A CBM format or a variant is a much
faster way of loading and showing pictures than using compressed ILBMs or, at least for HAM or
EHB photo pictures, the debox routines.) Unpacking a standard MIDI file format in real time on
the CDTV is not sensible. It is much better to write a conversion program and massage the data
into a quick-load format. A high proportion of your development cycle will be involved in writing
tools to maximize data efficiency.

For example, suppose you have a MIDI file which has one track running at 60 ppq with 192 MIDI
clocks per crotchet To convert the "events" in this file to CD-frame timed format you can see that
one crochet lasts exactly one second, and if the first starts at 0 frames, the second will start at 75
frames and the third at 150 frames. You will conclude from this that the absolute frame time for any
event is a simple conversion of the total elapsed time from the start of the playback. This is fine for
tracks without tempo variations, but when there is a tempo change you have to do a bit of juggling
with your maths, i.e., reset your logical master clock to zero, compute any remaining time on any
track event back to MIDI clocks, and then redo the sums.

Hie great advantage of doing this offline prior to mastering is that you can test it to destruction
before committing to the expensive plastic.

Programming and CDTV Multimedia 225

3.4.4 Sound:CDTV Audio Cookbook

PAL—NTSC

The PAL-NTSC conflict remains one of the biggest problems on the Amiga/CDTV. Many of the
American developers don’t really understand PAL because they don’t have to worry about it and
make dangerous assumptions. One of the great advantages of the CDTV is that the CD frame rate
is the same under both PAL and NTSC, whereas everything else, VBeams, DMA, processor clock,
etc., is different So unless you really can’t, use the CD flame rate as a clock and not well, as a
clock!

An NTSC machine is an NTSC machine. Period. A PAL machine may end up (about 50 percent of
the time with a genlock board in!) thinking it’s an NTSC machine when it isn’t The gfxBase flags

are totally and utterly unreliable about this. The best way to determine the type of machine is by
the method described in the “PAL/NTSC Issues” article.

The audio DMA clock rate is also different between the two systems. Usually the difference is
barely audible if you don’t have perfect pitch, but if you have CD-DA running a music track and
do not check that you are really on a specific model and use the correct the clock divide constant,

the trade will sound bad.

The clock constants for period calculations are 3,579,545 clocks/second on an NTSC machine and
3,546,895 clocks/second on a PAL machine.

Other Audio Considerations

First, a few common questions:

(Q) Can I play just the left or right CD-DA, hence doubling the mono high-quality playback time
to 144 minutes?

(A) No.

(Q) Can I get at the CD-DA 16 bit DACs and play back my own 16 bit internal samples under
program control?

(A) No.

(Q) Can I get the CD-DA data into memory?

(A) No. The CD-DA side of the system is sealed for licensing reasons.

(Q) Can I alter the CD-DA volume?

(A) Yes. The MUTE and FADE commands fully control CD-DA volume level.

(Q) Is the CD-DA audio output level locked to the internal sound generation circuitry?

(A) No. Fbrget theory about relative dB levels and set your volume ratios when you have a test
disc. Theory is expensive in CDTV development.

226 CDTV Developers Reference Manual

3.4.4 Sound.CDTV Audio Cookbook

Audio Quality

There are two (or more) issues about audio quality. The first is for CD-DA tracks, the second for
internal 8-bit sounds.

Using CD-DA is pointless if you do not produce a professional quality recording, from which it
follows that waving a cassette recorder in the air is going to give you some of the most expensive
hiss you can reproduce. DAT recorders work to the same specification as CD-DA and what you
hear is what you get

However, do not make the assumption that either DAT recorders or CD units work at an invariable
speed. Speed variations between different drives can be significant—like 2 minutes over 72 minutes,
meaning a potential closing velocity of four minutes between two drives! You may run into problems
if you rely on stopwatch timings for long files. So the way to cut down problems is: lay the audio
tracks, get them edited by the CD manufacturer onto the master tape, make a test pressing and leave
them alone.

It is obviously outside the scope of this document to describe audio recording techniques. Suffice
it to say that for professional results there is no substitute for a professional recording studio aid
engineer.

But why use CD-DA? For many purposes it is not necessary. It is expensive, and for simple speech
files, etc., may chew up your disc at an alarming rate. If you want professional quality music there
is no alternative. For help files, commentary, the ordinary traffic of multimedia, you may as well
use Amiga audio. Bear in mind, though, that you will frequently have to use a background spooling
process to play long samples (remember the 128K limit for DMA samples, although there is a
workaround) and this may eat some processor time. The CD-DA is fully asynchronous and leaves
you to do whatever you like.

There is a wealth of example programs in the public domain which show you how to play Amiga
audio, so there is no need to go deeply into that. What is rarely mentioned, though, is the invidious
comparison between 16-bit and 8-bit sound that cannot be avoided when you have a disc with
CD-DA and 8-bit sounds running consecutively or together. Most Amiga sound demos use rock
music and sound pretty good; most CDTV applications use speech which may not

Rock music is usually densely-textured and compressed. Audio compression means that the overall
signal strength is forced up to something near a constant level. This is very appropriate for the
audio hardware because the noise is effectively buried in the signal. With speech, however, there
are very low level signals at the ends of words. Here the amplitude of the waveform drops off until
it is hovering around the zero line. In other words, it is revealing the inescapable truth that 8 bits
gives you vastly less precision than 16 bits. The low level sounds may crackle or break up around
the zero amplitude line as the sampler tries to decide whether this tiny noise level constitutes 1 or
0. Most good sampling software will allow you to ramp the amplitude down a bit when you have
made the sample. This may well knock out some rogue bits, but will also introduce new errors at
the next level down. You can keep on doing this until you have silence.

The simplest solution is to use a gate in the recording studio. This electronic filter will trap any
sound in the danger zone around the zero level and not pass it out of the mixing desk. Gates should
be used with caution though, as they can cause a nasty clipping if the threshold is too high. Just
a little gate should be enough. Using a microphone with very high sensitivity to the upper range
of frequencies is more likely to accentuate exactly the areas you want to eliminate. What we are

Programming and CDTV Multimedia 227

3.4.4 Sound:CDTV Audio Cookbook

doing here is trying to optimize the recording for the hardware on which it will nin, not strive for
the perfect recording, which is the CD-DA path.

You may have problems with some recording engineers—well, most people have problems with
recording engineers. The engineer is trained to get the highest possible bandwidth from his studio,
but you will want him to cripple his system so that the final result will sound better on the CDTV
than his perfect recording would. If necessary, equalize the top frequencies down a little, avoid
sibilance like the plague, and watch out for the wavering zero-line quantization problem.

For a first session or tests, it is a good idea to go straight from the desk into an Amiga digitizer. Use
the best you can get Some of the cheaper units work fine at high amplitudes but have poor internal
noise rejection—they will be slinging loads of Amiga bus noise into the ADCs.

When working with audio, it is important to remember the wide range of equipment performance
that will be used by CDTV owners when they play the disc. You could be on a dreadful television
or a megabuck hi-fi system. The acoustics of your room will color the sound you hear to a very
significant degree, so the best method for good quality control is to take the audio output either
from the CDTV headphone jade, or on an Amiga via an amp or mixer and use a pair of high quality
headphones. They will defeat the room’s acoustics and give you good sensitivity to pops, crackles
and noise. They may be too harsh, in fact, but that’s better than simply not hearing the problem.

There are other methods of getting digital sound into the system. On Music Maker, the instruments
were sampled in the studio on the 16-bit Casio SI000 sampler, shaped (on an ST) with Avalon,
saved to disc, passed to an Amiga, and then computed from 16 to 8 bits with a custom program tool.

There are DAT—*iisc systems available on some platforms (Mac, PC, ST) and any time now on the
Amiga. Their success or failure in this realm of application-building depends entirely on how good
they are at converting from 16 to 8 bits. They do not eliminate the zero line quantization problem
unless they are very, very smart and have efficient software gates built in.

Local Anaesthesia (Reducing The Pain)

For the new CDTV developer, the prospect of a read-only test-and-cry medium is daunting. The
good news is, it stays daunting. The early history of CDTV is littered with very expensive and
totally useless CDs.

The only way to keep the tenor down to manageable proportions is a sound methodology. If you
are going to make a mixed-mode disc, you will need an audio proof disc at the earliest possible
stage. Trying to cut this stage out of the loop will cost more, not less. Get the audio finalized,
cleared for world copyright, recorded and then onto a CD. If you can get all the data onto the CD
at the same time, do it because it makes life easier. If the audio is on and the data is on, you can
hone your program(s) with nothing more than a floppy drive plugged into the system. This is the
preferred method, though if you cannot build the whole thing at this stage, you may have to use a
SCSI board in the CDTV expansion port and a SCSI device hung onto that

As mentioned before, when you lay your audio, allow for the data track, even if it means that track
ONE lasts fifty minutes and contains nothing but silence.

Use a good CD manufacturer. The good companies know everything and more about the physics of
the disc, the ISO 9660 standard, audio balancing, the works. The bad ones have a Yamaha One-Shot
machine and lots of potted plants.

228 CDTV Developers Reference Manual

3.4.4 Sound:CDTV Audio Cookbook

As with all other CDTV discs, the worst element alter testing, software finalization, etc., is making
sure that the startup-sequence and preferences settings are correct This is very important after
working from SCSI or floppy boot because you will no longer be using the startup-sequence on the
floppy or SCSI which may have different assigns on it

During development, you may want to address files on the floppy or the SCSI rather than the CD.
One method is to use paths to logical devices in the code—for example CD99:. Your startup-
sequence on the floppy or SCSI will assign that to itself most probably...but in the final system you
simply assign CD99: to CDO: in the startup-sequence. This really does make life easier.

Last Thoughts

The cdtvMevice is powerful. It does nearly all the work for you. The biggest rule and the most
important is make sure your file control is 100% and make sure the audio is stopped and cleaned up
before continuing, remembering that interrupt calls from VBeam or FrameCall may need some time
to disable. It’s also a good idea to make sure that you can never get into the situation where you try
to access a picture file or something like that while the audio is running. This is a guaranteed way
to lock up the system.

With the above things in mind, the system becomes easy and nice to use. It’s a real pleasure to hear
a high quality CD-DA track come up and play under your program control, and all you need is a
few lines of code.

You can end up swapping CD discs often during development If you start to get increasing errors
it almost certainly means your CD is dirty. Take it into the bathroom, wash it with soapy water, dry
it with a towel, and shove it back in.

Try doing that with a floppy!

Programming and COTV Multimedia 229

3.45 Sound:CD-DA Sound

CD-DA Sound

Recording 16-bit Sound

The CD-DA standard allows for high quality, flat response and very low noise playback. To get tire
most from it requires a professional approach to production, recording and engineering. Computer
users are often so impressed with the fact that there is any sound at all that they will accept noisy,
hissy sub-telephone quality. Compact Disc users expect clear, noiseless, radiant sound, and will not
be sympathetic to anything else.

Many CDTV publishers will go to professional recording studios to have their audio captured and
edited ready for mastering. Apart from considerations of sound quality, the most important factor
for developers when relating to the studio will be the way the final trade or tracks are presented for
mastering. The options involve a decision about the way the CD-ROM functions under program
control.

If the title breaks naturally into sections of audio—e.g., a Karaoke disc with fifteen music tracks—
the audio layout will reflect that Track 1 will be the data track with pictures, words and controlling
programs, and tracks 2 to 16 will be the audio tracks. An easy trap to fall into there involves track
1. Studios will not normally be used to having a data track as track 1 and will produce the audio
tracks from 1 upwards. This may cause confusion later about the numbering of the audio tracks.
It’s a good idea to have the studio make track 1 on the DAT or tape it produces be thirty seconds of
OdB tone. This helps the transfer to mastering equipment and retains the same numeric layout of
tracks.

A second potential problem is the track lead-in silence. Tastes differ between studios on this. Some
will allow a few seconds of silence at the track start, others will electronically trigger the DAT
marker so that the actual audio starts on logical frame 1 of the track. Either way, consistency is
desirable if you will later be synchronizing other events to the track.

A third problem is the mastering house. It is important to check before going to a studio the audio
formats supported by the mastering house. Some will accept reel-to-reel tape, some will accept 12
or 24 track masters, some will accept audio DAT, and some will be able to make a digital copy of
a DAT tape. In the last case, bear in mind that DAT can run at two rates: approximately 48,000
samples/second and approximately44,100 samples/second. If you are hoping to use digital transfer
it is vital that the studio use 44,100 on the DAT, because that is the CD sampling rate.

An alternative approach to track layout is where your title uses hundreds of small segments of audio
data—e.g., historical speech dips from world figures. It may be better for this to use only one
audio track which can be addressed by the program in time fragments—the MSF (Minute Second
Frame) standard. This allows tiny subdivisions of the audio track. If fades in and out are required
on short clips, it may be advisable to have these engineered at the recording stage, otherwise the
controlling program will have to retain fade time and position information for each segment If
the MSF approach to track layout is used, some effort in programming can be saved by using a
recording studio which is equipped with a good direct-to-disc digital recording system. This will

Programming and CDTV Multimedia 231

3.45 Sound:CD-DA Sound

allow the engineer to mark cue points for each of your small audio segments, and print these out
for you. These cues will give you the MSF information you need for correctly launching the audio
data.

Where a lot of shuttling backwards and forwards between audio sections may be required by the
program, it is useful to arrange the audio segments so that those most likely to be played in sequence
are as close together in the track as possible. The seek time on the CD may cause delays of up
to 0.8 seconds between widely spaced audio. These times are very difficult to compute accurately
without a proof-disc, and will be affected by intervening calls to the CD-ROM track to read data,
which will reposition the laser near the disc hub.

Audio Quality Guidelines

Getting the best from a recording studio is beyond the scope of this section. But if you have to
record sound away from a studio, or on a “Do It Yourself’ basis, some simple techniques will help
the final quality:

Speech and Interviews
The best position for a microphone recording speech is nine to twelve inches from the speaker’s
mouth, positioned below it Do not let the speaker speak intothe microphone. This causes
increased sibilance and popping as the airstream from the speaker hits the microphone. Too
close is as bad as too far away. As the distance increases, the proportion of ambient sound in
the recording rises, and the speaker appears to the listener to be much more distant she really is.
The ranges used by television interviewers are not a good guide because the picture provides
vital spatial information which modifies the spatial data in the sound alone.

Recordings should not be made in bare rooms. The echo massively overemphasizes the
perceived distance of the speaker. If an interview must be done in this kind of environment,
place a chair on a table and hang a coat over the chair. The interviewee and you should get as
close as possible to the coat, however bizarre and intimate a situation this creates. Microphone
cables cause very nasty rumbles and clicks. The correct technique is to wrap some cable from
the recorder around the hand, so that the hand takes up any cable rustle. The microphone should
not be held lightly like a chopstick, but gripped with as much pressure as can comfortably be
exerted.

Recording levels should be adjusted to be just below peak distortion level. Low level recordings
are hissy, but it is worth remembering that most people increase their volume once an interview
starts, so a careful eye should be kept on the level meter if the recorder is not in automatic
record mode. (Automatic recording should be switched off in noisy environments. It can cause
“hunting”, which is unpleasant to listen to.)

Classical Music
Orchestras, chamber orchestras, etc., are best recorded with a stereo microphone pair about six
feet behind the conductor and at a height of eight to ten feet Putting spot microphones into
orchestras is a very advanced recording skill, and best avoided unless you have a complete
mobile sound studio. Unlike folk and rock groups, orchestras, string quartets and other
essentially “acoustic’’ ensembles are best recorded in nice lively acoustics such as wood paneled
rooms. Adding electronic reverb to a good orchestra is like retouching a Rembrandt

232 CDTV Developers Reference Manual

3.45 Sound:CD-DA Sound

Acoustic Folk
To get the best results, it is necessary to supply a microphone for each instrument and voice.
Acoustic guitars are best captured by pointing a microphone at the wood between the hole and
the end opposite the screws. In general, you need to get as much separation between all the
elements as possible and rebalance them on the mixer.

Rock And Electric Sounds
Either take an audio feed directly from the instrument, orplace speakers in the studio sufficiently
far apart so that a microphone approximately twelve inches from the speaker will get most of
its input from that speaker and not all of them. Put the drum kit well away from everything rise.
For the best results, bully the band into turning the equipment down to the lowest level that
will enable them to play. Add plenty of reverb. The worse the band, the more reverb required.

Drum Kits
Recording engineers will argue for hours about the best microphone to use for each element of
the drum kit For acceptable recordings, use one microphone positioned above the upper part
of the kit (snare, cymbal, etc.) and a separate microphone for the bass drum. The bass drum
should have its front removed and a pillow or cushion stuffed into it

Recording In Hie Open Air
If you are trying to capture an acoustic band (wind band, etc.) playing in the open air, persuade
them to play near a tree or other high but accessible object and place the microphone as nearly
above them as possible. In the open air, high frequency sound goes up like pure hydrogen, and
the closer you are to its path, the better.

Piano
Upright pianos should have either a microphone (or two) placed above the open lid, or beside
the feet of the pianist Grand pianos should have at least one microphone inside the open lid
pointing down at the strings, or below the piano about twelve inches from the floor pointing
upwards.

Careful positioning with even a cheap mixer and cheap microphones will bring better results than
bad positioning with high quality equipment

CD-DA has very low noise, even at low recording levels. There is no need to compress sound and
force it up to a high average amplitude unless that is the desired effect The complete dynamic range
may be used. This is quite different from the 8-bit recording technique, which usually requires a
high average amplitude.

CD-DA Plus 8-Bit Audio

There is no simple equation that will tell you what the relative volume settings should be when
playing a 8-bit Amiga sound sample at the same time as CD-DA. The ratio is a function of the final
sound energy of both waveforms. The only way to establish the correct balance with any certainty
is to cut a proof-disc and adjust the volumes either by altering the 8-bit volume, or the CD-DA
volume. The “density” of the sound may be as important as the actual volume.

If both sound generation systems are to be used together, it is very important that the CD-DA
volume not change between cycles of the pre-mastering process. If the pre-mastering house has to
redigitize the sound tracks, there is no guarantee that its equipment will operate at the same input

Programming and CDTV Multimedia 233

3.45 Sound:CD-DA Sound

level without a clear 0-level reference tone being placed on the audio tape (and even then it is not
always guaranteed). CD-DA tracks should be finalized, recorded, transferred to the pre-mastering
equipment and stored in digital format at the pre-mastering house unless changes have to be made
to than.

Playing CD-DA Tracks

The cdtv.device makes playing CD-DA tracks very simple. Two main play mechanisms are
provided—by track or by time offset In both cases, the play can be synchronous or asynchronous,
as required by the programmer.

The cdtv.device accepts messages in StdIOReq format passed with either DoIOO or SendlOO-
The relevant constants and structures are defined in cdtvJi.

The following code examples assume (for brevity) that two MessagePorts named Portl and Port2
have been successfully opened, that two IOStdReq structures have been allocated with pointers
to them in pIOSRQl and pIOSRQ2, and that these two requests have successfully performed an
OpenDeviceO on cdtv.device. The examples are in HiSpeed Pascal™, but are simple to transfer
into C, Modula-2, assembler, etc.

{Example function to perform a synchronous track play)

Function PlayTrack(track:integer):boolean;

VAR x:Integer; { for DoIO return code }

begin
IF ((track<l) or (track>99)) then { illegal track number }
begin
PlayTrack:=false; { return error }
exit;

end
else
begin
With pIOSRQl DO { set up StdIOReq }

begin
IO_Command:=CDTV PLAYTRACK; { play by track number)
IO_Offset : =traclc; { no guarantee this track actually

exists, but try)
IO_Data:=NIL; { zero unused fields)
10 Length:=0;
end; { with }

x:=DoIO(pIoRequest(ISRQ1)); { Do request)
PlayTrack:*(x*0); { return the success of the DoIO)
end; { if/else }

end; { PlayTrack }

Assuming the track exists (and there is a CD present!), this call will play the CD-DA track and
return when the track concludes. Of course, this function could be extended to return the actual
error returned in the IOStdReq message if an error occurred.

The asynchronous version of the above code sends the message and then returns, leaving you to
perform screen magic or Midi I/O, etc., while the audio is playing.

{Example function to perform an synchronous track play)

Function LaunchTrack(track:integer):boolean;

begin
IF ((track<l) or (track>99)) then { illegal track number)
begin

234 CDTV Developers Reference Manual

3.45 Sound:CD-DA Sound

LaunchTrack:=false;

exit;
end
else
begin
With pIOSRQl DO

{ return error

set up StdIOReq
begin
IO_Command:-CDTV PLAYTRACK,
10 Offset :«traclc;

play by track number)
no guarantee this track actually

IO_Data:*NIL;
10 Length:=0;
enH;

exists, but try)
zero unused fields }

LaunchTrack:«TRUE;
end;

end;

SendIO(pIoRequest(ISRQl))
with }
send request }
assume success of the SendIO }
if/else }
LaunchTrack)

The trade should now be playing. A short pause to allow it to start, followed by a call (with a separate
IOStdReq) with the commands CDTV_STATUS or CDTV_QUICKSTATUS should establish that
the track is there and running. With your own CD this should not be necessary once the program
has been debugged because you will know how many tracks you have. Where users are invited to
insert their own discs, it is wise to read the disc’s Table Of Contents (TOC) to find out how many
tracks there are, and be sure never to play track 1 if it is a ROM track.

Assuming the audio track is playing, the next concerns that arise are:

Has it stopped?
How Do / Stop It?

The ChecklOO system call returns the status of a pending I/O Request, so:

over:*=CheckIO(pIORequest(pISRQl))

When over becomes TRUE, the track has stopped. Whether it has, or whether we want to stop it,
the following code is used:

Abort10(pIORequest(pISRQl)); { abort the request }
er:=WaitIO(pIORequest(pISRQl)); { wait for abort }

The cdtv.device does not complain if terminated 1/0 Requests are aborted, and this makes the code
simple and general. But, although the I/O has stopped, asynchronous play requests do not normally
switch off the drive light and restore the system. The following additional code should be added:

pIOSRQl*.IO_Command:=CDTV_STOPPLAY;
pIOSRQl*.IO_Offset :=0;
pIOSRQl*.IO_Data:=NIL;
pIOSRQl*.IO_Length:=0;
er:«DoIO(pIORequest(pIOSRQl));

The CDTV_STOPPLAY should ensure that the system is now completely stable and safe for file
transfers. The command may be issued with a different IORequest before the AbortlOO, but the
required code will be essentially the same.

Programming and CDTV Multimedia 235

3.4.5 Sound:CD-DA Sound

Using PLAYMSF

The code examples in the previous section deal with complete CD-DA tracks on the CD. In many
cases it may be desirable to play a fragment from a track, and this can be accomplished with the same
ease as playing a track. Two formats are provided: CDTV-PLAYLSN and CDTV_PLAYMSF. The
PLAYLSN command requires detailed knowledge of the disc geometry and will only be used under
exceptional circumstances, so we concentrate only on the MSF format

The Minute, Second and Frame values are UBYTE numbers packed into a ULONG with a Reserved
byte in the ‘leftmost” byte. The cdtv.h header file defines a union type which allows easily
manipulation of the interior data in the various ways the device driver expects to see it

MSF Has 75 Frames. Although the MSF format corresponds to SMPTE terminology,
there are 75 CD frames/second, rather than the 24/25/30 used in SMPTE handlers. The
range of the Frame byte in the CDTV RMSF format is therefore 0-74.

A C Macro to pack the fields is provided in cdtv.h.

The only difference between using CDTV_PLAYTRACK and CDTV-PLAYMSF is that the
CDTV—PLAYMSF command expects two fields to be filled in with the packed RMSF long words.
The Offset field contains the starting time and the Length field contains the stopping time. The
behavior is otherwise exactly as above, and whether it is synchronous or not depends on whether
you dispatch the request with DoIOO or SendlOQ-

Reading The Table Of Contents

The TOC (Table Of Contents) of a CD lies outside the ISO-9660 ROM image, and is present
for CD-DA only discs as well as CD-ROM discs. It is not exactly a King Solomon’s Mine of
Information, and will not, unfortunately, tell you what a track is called, but only its start time, and
what kind of track it is.

In Pascal each entry for a track is defined as follows:

TYPE CDTOC=RECORD
rsvd : BYTE;
AddrCtrl : BYTE;
Track ; BYTE;
LastTrack: BYTE;
Position : tCDPOS; { packed RMSF)
END;

The AddrCtrl field contains various bit flags indicating the track type. The exact interpretation of
the other fields depends on which track we are reading because although there is no “real” track 0
on the CD, the TOC itself constitutes a phantom track 0. For the 0 track entry, LastTVack contains
the number of the last track on the CD, which also, as it happens, is the number of tracks. This field
is not valid for any other entries.

The cdtv.device command CDTV.TOCMSF allows you to read up to one hundred entries into an
array of the CDTOC structures. The Offset field in the IOStdReq structure determines that track
to start at, and the Length field determines the number to read. Obviously, you can determine the
number of tracks by reading one track from offset=o and then allocate a dynamic array to read only
that number of tracks. In the following example, a static array big enough to hold the entire TOC

236 CDTV Developers Reference Manual

3.45 Sound:CD-DA Sound

is declared, and the procedure GetTOC gets all the disc data into the array. Elements above the
LastlVack value in element 0 of the array will be invalid.

VAR DiskTOC:array[0..99] of CDTOC;

{ Pascal procedure to read entire TOC from CD }

PROCEDURE GetTOC;
VAR doloresult:integer;

begin
With pIOSRQl* DO
begin
10 Commands*CDTV TOCMSF; { data in Position is R M S F format }
IO_Offset :=0; { start from track 0 }
IO_DataDiskTOC; { address of array }
10 Length:=100; { read entire toe }
end;
DoIOresult:=DoIO(pIoRequest(pIOSRQl)); { do it! }

end; { GetTOC }

If all went well, the TOC data will now be in the array DiskTOC, but the tracks only have their
start times in the TOC entry. To find the end of a track, use the value in the following entry and
subtract at least one frame. Well—that’s fine for all tracks but the last one, which does not have a
successor! To find the end of the last track, use the value in the Position field of DiskTOC[0], This
is the start of the lead-out area on the disc.

It is normal to lay out discs with two seconds of digital silence between tracks. This cannot be
relied upon. Some Classical CDs have tracks that follow with no break at all.

The simplest way to determine whether a disc is mixed-mode, CD-DA only, or simply an ISO-9660
disc with no audio, is to use the CDTV_ISROM device call, which is handled much as the examples
above. This call returns a boolean value in the io-Actual field of the StdIOReq. For most disc
cases, this will be adequate, but if you want to have note detail, examine the flag values in the
AddCtrl field in conjunction with cdtv.h.

Timing Considerations

For close synchronization with CD-DA tracks, the following considerations apply:

1. The audio tracks must be in exactly the same place for each CD.

2. The start of play must be checked until it stabilizes.

3. A dock must be running that is locked to the CD-DA.

The best way to achieve absolute control on the CD-DA tracks is to have them placed in position
only once, to have a proof-disc with the tracks on, and to ensure that this data is stored and reused
by the mastering house. Accuracy to one frame is usually impossible; five frames is normal.
Bear in mind that neither CD players nor DAT recorders are absolutely accurate. It is possible to
compound speed errors to achieve a significant mismatch between tracks by making assumptions
about accuracy.

In practical terms this means assign enough room for track 1 to allow for all your possible changes to
code and data. You can then ask for the CD-DA tracks to start at an offset that equals, for example,
100 Mbytes. The tracks are sampled or transferred to the control system for proof-disc and master
disc cutter. For each iteration of the development process, your data track image is substituted for

Programming and CDTV Multimedia 237

3.4S Sound:CD-DA Sound

the track 1 space on the control system. You can then be certain that the audio tracks are identical

in format and position to those for the last iteration.

Checking for exact start of play is a run-time function. Although you may send an IORequest

asking for an asynchronous track or MSF play, you have no means of knowing whether this will

take 0.5 seconds or no time at all. The easiest way to check that your track has started audio play

is to use the cdtv.device CDTV_QU1CKSTATUS call. As you have sent your play request on the

primary IOStdReq structure, you must have another ready to do this. CDTV_QUICKSTATUS

returns a number of flags in die io_Actual field. Writing complex code to examine these bits

minutely can cause timing imprecision. When the track is valid and audio play is happening,

CDTV-QUICKSTATUS returns a value of 101 decimal. (If an error occurred, it will never return

this, so your check loop should allow for an error count-out or time-out.)

The launching algorithm is evidently: Set up track or MSF play

SendlOO the request
REPEAT UNTIL QuickStatusResult= 101 OR TimeOut

Amiga purists will probably complain that this implies a busy-looping call to DoIOO with a

CDTV-QUICKSTATUS command, which is exactly what it is. It does busy-loop, and it should.

For tight synchronization, other tasks should be ignored.

At this point, your track is playing or a major error occurred. Once you have a proof-disc and have

debugged silly track numbers or MSF values out, the call should be reliable, Tlie question then is:

How do we synchronize events to it?

The simplest and most efficient synchronization is achieved by installing some code to be handled

on the CD frame interrupts, which happen seventy-five times per second. There is no need to set

up an Interrupt structure, because the cdtv.device handles the low-level aspects of this for you.

However, it does expect you to get into and out of your code quickly. The Frame code is executed

in Supervisor mode. It will not permit long and fancy tricks. Typical frame synchronization code

will be:

{ Global Clock variable has been declared as type Longint }

Procedure AddClock;
begin
INC(Clock);
end;

This unimpressive routine is added to the system by a call to the cdtv.device with the

CDTV-FRAMECALL command. When this code is posted to the cdtv.device, the Clock vari¬

able will increment seventy-five times per second. You will need a separate IOStdReq for each

Framecall code block you add (you can add as many as you like) because they are requested with

SendlOO and stay there until an AbortlOO referring to them is sent

The AddClock code is locked to the system like this:

With pIOSRQ2* DO
begin
IO_Command:=CDTV_FRAMECALL; { request addition of code }
IO_Offset :=0;
IO_Data :=@AddClock; { address of framecall code }
10 Length :=0;
end;
SendIO(pIoRequest(pIOSRQ2)); { added to system)

At the point that our QuickStatus checking above returns successfully, we can now do:

238 CDTV Developers Reference Manual

3.45 Sound:CD-DA Sound

Clock:=0;

The Clock will now increment seventy-five times per second, and we know that this is very tightly
synchronized with the track play. Clock will continue to increment until the IORequest is aborted.

This looks too good to be true, but in fact, it is that easy. The important point to remember is
that each Framecall requires its own IORequest because it stays on the device queue until you
AbortlOO it. Trying to reuse IORequests which have been sent to the device but not returned is
eventually going to cause grief.

As always, the danger with asynchronous I/O on a CD is in assuming that it is safe to do a file transfer
without being absolutely certain that the track play has terminated. This is the most common source
of difficulty in CDTV development It is good software design to encapsulate all I/O to the CD
within one module, with guards against any track play during file I/O or file I/O during trade play.
With cdtv.device calls spread across a range of code blocks, the chances of I/O contention rapidly
increase.

PAL And NTSC

The DMA dock rates for PAL and NTSC machines are different The audio pitch for a sampled
sound played at the same audio DMA rate on each system will differ by a fraction of a semitone.
For speech, the difference is insignificant For 8-bit Amiga SMUS track play, the difference is also
so small as to be insignificant But where pitched notes generated on the 8-bit Amiga hardware are
merged in the audio with CD-DA tracks, the difference may be painful. The CD-DA pitch is not
affected by PAL/NTSC considerations.

With Kickstait 1.3 running on PAL CDTVs or Amigas, there is a chance that the system will
incorrectly boot into NTSC mode. This problem has been solved under Kickstart 2.0. Assuming
that you know which machine your code is running on, it is important to use the correct divisor to
compute the audio DMA ticks for a sample at a given frequency.

For frequency Freq, the audio DMA ticks are calculated as:

NTSC ticks = Freq DIV 3579545;
Pal ticks = Freq DIV 3546895;

For finely-tuned music titles, it is unsafe to assume that even this strictness is enough. Calculations
of note frequencies within high octaves may need “hand” adjustment for the two systems.

Coda

The use of CD technology has two benefits: storage and sound quality. If the requirements of
storage allow for it, there is no contest between 8-bit sound and full CD-DA quality. Playing
CD-DA tracks on CDTV is easy. Unless the title must load data from the CD at die same time as
sound is playing, CD-DA is the audio format to use.

Programming and CDTV Multimedia 239

3.4.6 Sound.MIDI

MIDI

Overview

The purpose of this article is to explain MIDI and how to use MIDI in a CDTV application.

Specifically, this article covers:

• MIDI Overview

• CDTV & MIDI—possible applications

• Available Tools

• Programming Techniques

• CD & MIDI

• Tools Resource List

MIDI Overview

WHAT IS MIDI?

MIDI is an acronym that stands for Musical Instrument Digital Interface. The acronym’s meaning
makes MIDI sound like a noun, but it is much more. It is not only a type of interface for connecting
musical instruments and other equipment together, MIDI is also a complete protocol specification
for how MIDI-equipped devices can talk to each other.

In effect, MIDI is a local area network for musicians. It allows devices to be connected together so
that they can communicate. Therefore, equally valid questions are “Does that synthesizer keyboard
have MIDI?”—meaning does it have a MIDI interface (connectors) built-in—and “What are its
MIDI capabilities?” which asks how flexibly the keyboard can be controlled or control other
equipment

THE PROBLEM THAT CAUSED THE DEVELOPMENT OF MIDI

Electronic musical instruments—usually referred to as synthesizers—are sophisticated sound gen¬
erating devices with controls such as keys, wheels, pedals, buttons and knobs to shape the resulting
sound. There is a variety of synthesizer types, each creating distinctive types of sounds. Synthesiz¬
ers usually fall into one or more of the following broad categories: Analog, Digital, Sampler and
FM. These categories describe the methods the synthesizers use to generate sound. The details of
those methods are outside the scope of this article.

Programming and CDTV Multimedia 241

3.4.6 Sound.MIDI

Synthesizers, Synthesizers, Everywhere Synthesizers

Most professional synthesizer players have multiple synthesizers from the different categories
mentioned, and it became dear in the very early days of synthesizer development that it was very
cumbersome to have to configure and use all these different types of synthesizers, particularly live.
You may have seen rock concerts from the 1970s where a keyboard player was surrounded by a
dozen keyboards. It was basically a nightmare to keep all of this equipment configured properly,
not to mention physically demanding for the musician to have to turn around to find the keyboard
he wanted to play at any given point in the performance.

In the late 1970s and early 1980s, great minds got together and dedded that a way to connect
synthesizers together was necessary to simplify using them. Under such a system, a musician could
use one keyboard not only to play its sounds, but also to control and play other keyboards and
devices. This would mean the end of keyboard players spinning around on stage among rows and
rows or keyboards arranged in a circle. Shortly thereafter, MIDI became a reality.

PHYSICAL DESCRIPTION

Physically, MIDI is very simple. The interface is basically a fast (31,250 baud, to be exact)
serial (RS232) port with receive and transmit signals connected to separate round, 5 pin ‘DIN’-type
connectors specified as IN and OUT respectively. If you look at any MIDI-equipped device (usually
the back,) you will see one or more of these 5 pin DIN connectors.

Some devices do not have any need to transmit data, and therefore do not have an OUT (transmit)
connector. An example is a MIDI-controllable light box that can be sent MIDI data to turn lights on
and off. There is no reason for this light box to ever send data to anything else, so it doesn’t have a
MIDI OUT connector.

Other devices may not need to receive any data, and therefore don’t have an IN (receive) connector.
An example is a drum pad that sends MIDI data out whenever someone hits it with a stick.

Connecting the output of one MIDI device to the input of another opens up many interesting and
useful applications. If a MIDI cable is connected from the MIDI OUT connector of the hypothetical
drum pad to the IN of the hypothetical light box, then these devices could be configured such that
whenever the drum pad is hit, a light could go on.

SOUND MODULES

Once the door was opened for one keyboard to control one or more others, it became clear that
the keyboards being controlled didn’t actually need a physical keyboard, which is usually the most
expensive part of a synthesizer. All these other keyboards were being used for was their sound
generating capabilities.

So a whole new generation of synthesizers now exists, which are usually referred to as synthesizer
modules. These modules incorporate synthesizer sound-generating electronics, without the key¬
board, and can be mounted in a rack. They are connected—via MIDI cables—to other devices,
usually a keyboard, which send data to them to cause them to produce sounds.

242 CDTV Developers Reference Manual

3.4.6 Sound.MIDI

MIDI THRU

If the communication between synthesizers consists of a transmit and receive, you may be wondering
how one keyboard could talk to more than one other keyboard or sound module. The answer is
called MIDI THRU, and physically consists of an additional MIDI connector on many devices
usually marked THRU. This connector automatically outputs whatever data arrives at the MIDI IN
connector. Therefore, one keyboard can communicate with two sound modules, for example.

MIDI DATA FLOW

When typically configured, a key pressed on the keyboard in the above diagram will cause MIDI
data to come out of the MIDI OUT connector, and flow to the IN connector of module 1. It will
automatically be mirrored at module 1 ’s THRU connector, and flow to module 2’s IN.

The second module’s THRU connector could be connected to the IN of something else, and so on.

MIDI CHANNELS

The question arises, if I play the keyboard in the above diagram, does it mean that a sound will
come out of the keyboard and both sound modules? Clearly if that were the case, MIDI’s usefulness
would be greatly diminished.

The MIDI specification allows data to be organized into channels, up to 16 of them running through
one MIDI cable, and MIDI devices can be configured to respond to one, many, all, or no MIDI
data channels. There is only data transmission wire in a MIDI cable and not 16, so the data bytes
themselves travelling along that one wire contain information specifying which channel the data is
associated with.

If the data coming from the keyboard were specified as channel 1, and module 1 is configured to
make sounds when it receives notes on channel 1 while module 2 is configured for channel 2, that
only the first of the two modules would make sound when keys are hit If the keyboard is then
configured to transmit on channel 2, the first module will stop making sound, and the second will
start

Just to add to the confusion, it should be noted that one sound module or keyboard might respond to
more than one channel, in effect, acting like multiple sound modules. These are called multitimbral

Programming and CDTV Multimedia 243

3.4.6 Sound:MIDI

devices. Sound modules or keyboards can usually be configured to respond to any channel also,
which is known as OMNI mode.

And to totally confuse you, more than one sound module may respond to the same channel, allowing
someone to play multiple sounds at once with a single key press.

This flexibility has made MIDI a useful standard that has withstood the test of time and progress.

LOCAL CONTROL AND CONTROLLERS

But, you may be asking, isn’t the keyboard still making sound also, in addition to one of the other
modules? The answer is: if you want it to. Most keyboard synthesizers can be configured as to
whether pressing the keys will play the internal sound electronics or not. This is called local control.

Think of a keyboard synthesizer as two parts: a keyboard, and a sound module. The two components
just happen to be in the same physical case. The physical keys on the keyboard is a controller, i.e.,
something that the player uses to control the music. Other examples of controllers include modula¬
tion and pitch bend wheels (common on most synthesizers), foot pedals, breath controllers (which,
as their name implies, you blow into, and they generate MIDI or electrical control information), and
drum pads which don’t sound like drums when you hit them, they just generate MIDI information
that can cause a sound module to make sound.

Specifically, local control determines whether the controllers in a synthesizer keyboard automatically
cause the built-in sound module to generate sound or not On some synthesizers, local control can
be specified for each controller, e.g., the keys may make sound locally (as well as generating MIDI
data, if desired), while the wheels might not An example of how this control might be used is a foot
pedal connected to a keyboard—it may not do anything to the keyboard, but the MIDI it generates
will do something to another sound module.

MIDI DATA

MIDI data appears to any MIDI device as a stream of one or more bytes. Most bytes are part of a
multiple byte message or event. For example, pressing a key on a keyboard generates 3 bytes of
data. The first byte indicates that the event is a NOTE ON event, and also specifies the channel. The
second byte indicates which key was pressed, as a value from 0-127. The third byte indicates how
fast the key was hit, which is known as velocity. The velocity of a note might change the timbre of
the resulting sound, as is the case with traditional instruments such as a piano.

Other types of events or data packets include:

• the activity of another controller such as a wheel or pedal

• pressing harder on a key while it is depressed (known as aftertouch)

• information specific to a particular piece of equipment (known as system exclusive which is
ignored by equipment that does not recognize the header of this information which specifies
the manufacturer, and data stream type).

244 CD 7V Developers Reference Manual

3.4.6 SoundMIDI

MIDI SUMMARY

To recap, and to repeat, MIDI is like a local area networic designed for musicians. It allows
equipment to be connected together so that they can communicate and control one another.

CDTV & MIDI—Possible Applications

CDTV is a MIDI-equipped device, i.e., it has MIDI IN and OUT ports on the back. It can serve as
both a controller and a sound module through software and the built-in, 4 voice 8 bit digital audio,
respectively.

HOW CAN MIDI BE UTILIZED ON CDTV?

Musical applications can basically be broken down into two categories: consumer and professional.

Consumer

Consumer music applications can either be the sit back and watch variety, or better, interactive
ones that give users the feeling that they’re as talented as Mozart. The sit back and watch type of
application might use the CDTV as a jukebox, pumping out previously created MIDI sequences
to whatever synthesizer the CDTV is connected to. The interactive type of application should
let users have fun by interpreting their interactions in harmonically interesting ways. Perhaps the
program can improvise accompaniment to go along with a user's playing. An outstanding example
of this type of program is called Band-In-A-Box, although it is not available for the Amiga yet,
unfortunately.

Professional
Professional applications (or more specifically, ones for people interested in creating music) should
provide the power to create, edit and store musical compositions or sounds. Perhaps a rack-mounted
CDTV with professional sequencing software could be useful for musicians because of the compact
nature of the device, and the way in which it would integrate in a rack with other equipment.

MIDI sound libraries (parameter sets) for every known synthesizer could be sold on one CD, with
a nice simple-to-use interface.

Available Tools

There are many programs available that ’do’ MIDI. Some do MIDI only, while others handle MIDI
in the context of other features, such as a multimedia authoring program that can play animations
while outputting MIDI data.

Programming and CDTV Multimedia 245

3.4.6 SoundMIDI

SEQUENCERS

Sequencer: a computer program or device that can capture, play back, and manipulate
MIDI and/or other (usually music-releated) data. In its simplest foim, a sequencer is like a
multitrack recorder, but the more powerful ones are like the musical equivalent of a word
processor.

Many Amiga-compatible sequencer programs should run unmodified on the CDTV if a keyboard and
floppy disk drive are connected. These sequencer programs allow you to create MIDI and/or CDTV
digital audio (not CD audio) compositions. The audio output of the CDTV and/or synthesizers could
then be recorded and pressed onto CD audio tracks for use in your application, but that process is
outside of the scope of this article.

To record musical compositions, you should connect one or more synthesizers to the CDTV unit,
run the sequencer program, and record one or more tracks of notes/events. Sequencers can play
back previously recorded tracks as you record additional tracks. Typically, each track would be set
to a different channel so as to play a different sound module or keyboard. As mentioned above, a
modem, single sound module or keyboard that can respond to multiple channels, playing different
instruments on each channel are termed multitimbral. One very popular (but no longer sold,) small,
desktop-sized multitimbral sound module is the MT-32 from Roland. It can respond to 8 channels
at once, allowing for full compositional arrangements to be made. The MT-32 also incorporates a
simple digital reverb which provides real world acoustics instead of a dry, dead sound.

MULTIMEDIA TOOLS

AmigaVision 1.8 will support output of Standard MIDI Files, which will (combined with all of its
other powerful features) make it an ideal tool for CDTV authoring.

ShowMaker from Gold Disk supports time-line editing of MIDI tracks, Amiga graphics, and other
events, to allow the creation of spectacular multimedia presentations.

Director 2, a powerful authoring system from the Right Answers Group, also supports MIDI.

Other multimedia tools may offer MIDI capabilities also, and should be investigated.

Programming Techniques

The analogy of MIDI to networking is quite accurate, and can involve a tremendous amount of
tricky programming. Because MIDI data is used for musical applications, there are also a large
number of very tricky timing-related issues. The ear—and subsequently, the brain—is very sensitive
to music tempo changes, which means that the timing of musical MIDI data input and output must
be accurately tracked.

246 CDTV Developers Reference Manual

3.4.6 Sound.MIDI

Rolling Your Own MIDI Routines

Creating your own MIDI routines is not an easy thing to do. It requires extensive knowledge of the
CIA timers, the serial port hardware, and efficient interrupt coding. This article would be enormous
if all of these issues were covered.

It should be noted that the Amiga OS 1.3 serial.device is too slow to handle MIDI data efficiendy,
particularly considering the fact that the CDTV is only a 68000 based system, and that the MIDI
baud rate is a relatively fast 31,250 baud.

CAMD

Fortunately, CATS will offer a tool called the Commodore Amiga MIDI Driver, or CAMD for short
This driver handles all of the low level I/O and timing issues on a CDTV or Amiga system, providing
a higher level interface for your application.

CAMD is an Amiga OS run-time library, and is opened, used, and closed just like any other system
library such as graphics.library and intuition.library.

CAMD History

CAMD was originally developed at Camegie-Mellon University. It was then improved and opti¬
mized by Bill Barton, and has since been improved and tested inside Commodore to meet in-house
standards.

Time-stamping and Filtering

As was mentioned above in the “Programming Techniques” section, timing is critical in musical
MIDI applications, and CAMD handles the time-stamping of incoming data automatically. That is,
the time at which each incoming MIDI message is received is stored with that message.

Also, your application can tell CAMD to ignore certain kinds of data, allowing your code to handle
only what it is interested in. For example, you may not care if users of your application are playing
around with pedals and wheels on their synthesizers (which can generate a lot of data), but you need
to know if they’re pressing keys on the keyboard. CAMD will allow for this kind of filtering.

Virtual Port Management

CAMD will usually be used to process data coming into and going out of the standard MIDI ports
(which are,in fact, just different connectors on the serial interface). However, it can also read
data from and write data to ’virtual’ MIDI ports which don’t have any physical hardware attached,
but might be inputs and outputs of other running applications. This facility can be used to allow
MIDI application modules to have an input and an output that could be either the physical ports, or
the output and input from another running module. This allows for a modular approach to MIDI
software, which is ideal in a multitasking environment

Programming and CDTV Multimedia 247

35.1 Creating CDTV Applications :CTrac Emulation System

CTrac Emulation System

Introduction

The CTrac CD-ROM emulation system, developed by ICOM Simulations, Inc., is a combination of
hardware and software that emulates CD-ROM discs for the CDTV. The emulation system creates
an image of a CD-ROM disc in a file on the hard disk drive of an Amiga. The system then acts as
the CD-ROM drive by presenting the image to the CDTV, as if it were an actual CD-ROM disc.
Since the emulation system replaces the CD-ROM drive in the CDTV, all formats and modes of
CD-ROM can be emulated including CD-DA, CD+G and CD+MIDI.

This is a true emulation environment, not a simulation. The application actually runs in the memory
of the CDTV. The emulator board replaces the CD-ROM mechanism. Every time the CDTV tries
to access the CD-ROM, it accesses the emulator board. The board and the emulation software in
turn access an ISO 9660 disc image on the Amiga’s SCSI disk drive. Hie board slows down the
seek times of the SCSI drive, as well as the data transfer rate, to accurately emulate the performance
of a CD-ROM drive.

Until now, the only accurate way to test CD-ROM applications was to have the application pressed
on to a CD-ROM disc and then tested in the CDTV. The process of pressing a disc to test an
application under development is time consuming and costly, especially if the application does
not work properly. Emulating CD-ROM applications with the CTrac emulation system not only
eliminates the need to have discs pressed for testing but also allows accurate monitoring of the
commands sent to the CD-ROM drive. We do recommend that a test disc be cut before mastering
the application, however.

The CTrac CD-ROM emulation system hardware consists of a printed circuit board that plugs into
an Amiga 2500 or Amiga 3000, and an interface cable. The cable connects the emulator board to
the CD-ROM drive connector in the CDTV. The CTrac hardware together with the CTrac software
running on the Amiga emulates the CD-ROM drive in the CDTV. The emulation is completely
transparent to the CDTV.

CTrac Contents and Software Description

Hardware

The CTrac emulation hardware consists of the CTrac emulation printed circuit board, and an
interface cable.

Programming and CDTV Multimedia 249

35.1 wmmmmmmm Creating CDTV Applications:CTrac Emulation System

Software

The CTrac emulation software consists of the following files and directories:

Emulate
The emulation software

Builddisc
A tool used to create entire CD disc images for the CTrac emulation system. It combines track
images, along with the proper subcode information, into one composite disc image. The final
riisr. image is needed for the emulation software.

Buildtrack
A tool used to create ISO 9660 formatted tracks that are needed on the CD-ROM discs used in
the CDTV. The output of this program is used as input for the BuildDisc program.

ISOUtil
A tool used to extract, update and list directories of files contained in ISO track images or from
disc images that contain ISO tracks.

Libs
The Libs directory contains the requestor library that must be installed on the Amiga before
running the emulation software.

QFS
The QFS directory contains further directories and files needed to run the Qwik File System
on the Amiga. The Qwik Ftle System was developed by CONSULTRON. The data rate and
seek time requirements of the emulator exceed the abilities of the Amiga Fast File System.
Therefore, the Qwik File System is provided and must be installed on the hard drive that will
contain the disc images that will be used for emulation.

The Qwik File System is approximately 16 times faster than the Fast File System when
performing directory operations and approximately 2 times faster when reading files greater
than 36K. The Qwik File System must be installed on the hand drive that will contain the disc
images to be emulated.

The Qwik File System is compatible with the AmigaDOS file requirements with the following
exception:

16 character file/directory comments must be used instead of 79.

Install
A batch file that copies tire emulation software and tools to the command directory of the Amiga
boot drive.

The ISO DevPak diskette is also delivered with the Emulator. This diskette provides other
tools necessary for the creation of the ISO 9660 image.

250 CDTV Developers Reference Manual

35.1 Creating CDTV Applications :CTrac Emulation System I

Hardware Requirements

Amiga 2500, Amiga 3000, or Amiga 3500, with one free expansion slot
The CTrac emulation software was designed to run on an Amiga 2500 or higher model, such
as the Amiga 3000. If an Amiga 2500 will be used for development, the emulation software
must be tun in the 2500’s 68030 mode. 3 Mbytes of RAM minimum are required.

Two or three hard disk drives, with one 600 Mbytes or larger
At least two hard disk drives should be used with the CTrac emulation software. One hard
drive should utilize the Amiga Fast Hie System and contain all of the standard Amiga libraries
and tools. The second hard drive, which should be the larger of the two, must have the Qwik
Hie System installed. It will contain the disc images that will be emulated. If the image is too
large, you may need a third drive.

CD-ROM discs may contain varying amounts of data up to a maximum of approximately 650 MB.
Since the image of a CD-ROM disc is stored in a file on the hard drive of an Amiga, it follows that
the hard drive used must be at least as large as the largest image that will be emulated. Moreover, it
may be desireable to store the source data and track images that were used to build the disc image
on the same hard drive. If this is done, it could more than double the amount of storage space
required. Therefore, a 600 MB or larger drive is strongly recommended.

For CTampift, assume your application requires 400 Mbytes of data and code. In this case you would
probably need three hard disk drives, or a total capacity of 1200 MBytes.

• Drive 1, formatted under the Fast File System, contains your original source data and code.
You develop and test your application on this drive.

• Drive 2 will receive the track image built by the BuildTrack utility. This image will be at least
as large as your application code plus data (400 MB, in this case).

• Drive 3, which must be formatted under the Qwik File System, will receive the disc image built
by the BuildDisc utility. Again, this image will be at least as large as your application code
(400 MB).

One Drive May Be All You Need. You may combine both the track image and tire disc
image on one drive, if they will fit. If space allows, you can even build those images on
your source drive, if you have formatted your source drive with the Qwik File System.
Thus if your application contains only 30 Mbytes of code and data, you could develop it
and test it under the emulator with a single 100 Mbyte drive. You may also use separate
partitions of the same drive.

The hard drive containing the disc image must also be reasonably fast because the emulator requires
at least a 175K bytes/second maintainable data rate. For example, we have tested the drive using
the Quantum 40 and 100 Mbyte drives delivered with Amiga 3000s. Unfortunately, these drives
are not fast enough to allow proper emulation. The emulator reports error messages indicating that
it could not read data fast enough from those drives. We have successfully used Seagate 450 Mbyte
drives (reference ST2502N 94241-502) to resolve these problems.

Programming and CDTV Multimedia 251

35.1 Creating CDTV Applications :CTrac Emulation System

Installation of the Emulation System

Installation of the system is fairly quick, requiring approximately twenty minutes. First, the large
SCSI disk must be formatted under the Qwik Hie Systran.

Next, the install program is executed to copy the tools necessary for image building and emulation
to the Amiga hard disk drive.

Finally, the CIYac emulation board must be installed in the Amiga 2500 or 3000, and connected to
the CDTV player. The figure below indicates the physical set-up of the emulation system.

Amiga 2500 (or A3000)

Creating Disc Images and Using the Emulation Software

The following section describes the steps involved in preparing a disc image for the emulator, and
using the emulator board and software to emulate that image.

For this discussion, we will assume that the application is in “mixed mode”, that is, it contains a
certain number of CD-DA audio tracks, as well as Amiga code and data. We will also assume the
application has been written, and the data is ready. The application resides on a drive we shall name
DH0:. A second hard disk, named Q0:, has been formatted under the Qwik File System to receive
the image files.

Step 1
Use the iso utility to create a control file for BuildTrack.

The ISO utility is provided on the ISO DevPak diskette, available to licenced CDTV developers.
It reads the directory structure of your AmigaDOS drive (DH0:) and creates a file which
specifies which files to include in the ISO 9660 track, and the order of those files. The iso
utility allows files to be sorted by size, alphabetically by name, or to remain in the same order
as they were on the source disk. Iso creates an ASCII text file, which the developer can modify
for further optimization.

Step 2
Use BuildTrack to create a track image.

252 CDTV Developers Reference Manual

35.1 Creating CDTV Applications :CTrac Emulation System

The BuildTrack utility reads in the control file created by the iso utility. It verifies for ISO 9660
compatibility (maximum levels of nesting for subdirectories, filename conventions, etc.) It
then generates an ISO 9660 track image on the target drive (Q0:)

Step 3
Use the FixTM utility

The FixTM utility, also on the ISO DevPak diskette, modifies the ISO image to allow for direct
booting on CDTV.

Step 4
Create the BuildDisc control file.

Like the BuildTrack utility, BuildDisc is also directed by a control file. The control file, a
standard text file, specifies which tracks will be included in the disc image, and in what order. It
also allows other attributes of the disc to be specified, such as the length of the table of contents
(TOO.

Step 5
Use BuildDisc to create the disc image.

BuildDisc reads the controlfile, and generates a disc image with the track images that were
specified.

Step 6
Run the emulator using the disc image.

Now we can begin the actual emulation. The emulator software runs in the memory of the
Amiga 2500 or 3000. It requests the name of the disc image file which should be emulated,
and then begins to work.

Step 7
Reboot the CDTV.

Finally, we power on (or reset) the CDTV. The emulator software (along with the emulator board)
will intercept all attempts by the CDTV to access the CD-ROM drive. They access the disc image
on the SCSI drive instead. Furthermore, the board and software assure emulation of the data transfer
rate and seek times of the CD-ROM mechanism.

The CDTV application can be viewed on a monitor attached to one of the CDTV video outputs.
Meanwhile, the emulator software displays activity messages in its Activity Window. All accesses
to the ROM are indicated, as well as all commands received by the emulator.

A Status window at the bottom of the screen displays the name of the image file being emulated,
any emulator errors that have occurred during emulation, and the current state of the drive status
bits (ready, audio, done, error, SpinUp, Discln, InfErr).

Optionally, time emulation can be suspended. If this is done, the emulator no longer emulates spin
up, spin down, and seek delays. This permits testing applications at the fastest possible speed, but
the emulation is no longer accurate.

Follow The Script It is possible (and even advisable) to combine all these steps into a
single script file. You can launch the script, let it run as long as needed, and return to test
your emulation.

Programming and CDTV Multimedia 253

35.1 Creating CDTV Applications :CTrac Emulation System

Emulator Limitations

Seek Times
The emulator approximates the seek times and other delays of the CD-ROM drive in the CDTV.
Due to the variances in drives and discs, it is possible that a seek time on the emulator could be
slightly different from that on the actual drive.

Tasks
In order to obtain optimal results, it is not advised to run other tasks on the Amiga 2500 or 3000
simultaneously with the emulator software. The emulator needs a large amount of CPU time,
and its priority is set to 100. Furthermore, contention may develop between two tasks trying to
use the SCSI bus simultaneously.

Disk space and speed requirements
As discussed above, the CTrac system requires large amounts of SCSI disk space—three times
the size of your application. Furthermore, the disk must be a fast one, if you want to accurately
emulate the data transfer rate used by the CD ROM mechanism of the CDTV player.

254 CDTV Developers Reference Manual

352 Creating CDTV Applications Speeding Up Your Titles

Speeding Up Your Titles

The Importance Of Speed

The demands of multimedia titles are different from the demands of traditional computer programs.
Computer users are familiar with the idea of waiting for data to be loaded, particularly when working
with floppy disks as the storage medium, but users of multimedia applications approach them in the
same way that they watch a videotape of a film. Long delays with no apparent activity will soon
make the users hostile to the title. They are not interested in why it takes ten seconds to load an
animation—they want the show to go on.

Some thought must therefore be given to convincing users that the title is doing something sensible,
or they will begin to stab at the buttons on their infrared controller or keyboard.

Usually, and understandably, these long waiting periods result from programmers applying quite
proper traditional wisdom to a medium whose physics and demands are a little different.

Subjective Speed

A common delay on a CDTV title occurs when the user presses a button to go on to the next picture
or screen in a series. Typically the title will wait until a button is pressed, and then begin loading
the data. This will take at least one second per 150 KBytes of data, plus any seek times involved in
the laser moving to the position of the data in the CD-ROM track.

If, however, that picture is loaded into a second screen buffer while the user is looking at the
previous picture, it can be made to appear on the screen instantly when the user presses the button.
The load time for the data has not changed, but the user’s subjective impression is that the system
is very responsive.

This simple technique can change a sluggish title into a snappy tide with no low-level opdmizadon
of data transfer rates, but it does require planning at the design stage to make the double buffering
possible. Most approaches to improving performance depend on good design at the planning stage
and cannot simply be bolted on afterwards.

The Startup Sequence

The first impression a user has of a dde is what happens when the disc is inserted. The following
sequence of events takes place:

1. The system detects a new CD and resets.

2. The system examines the disc to determine if it is a CD-ROM disc or a CD-DA disc.

3. If it is CD-DA, the CD player screen is launched from ROM.

Programming and CDTV Multimedia 255

352 Creating CDTV Applications-.Speeding Up Your Titles

4. If it is a CD-ROM disc or mixed-mode disc (and there is no floppy disk drive with bootable
disk attached), the system tries to boot the disc.

5. If there is an ISO-9660 image in track one, this is examined. If it is a CDTV CD-ROM and it
has the correct copyright data in place it is booted. If the copyright is not correct, the system

turns the screen red.

6. At this stage the startup sequence in the S directory of track one is executed.

It is clear that this process takes several seconds to perform before the startup-sequence itself
is activated. So that the title itself can begin quickly, some thought needs to be given to the

startup-sequence.

It is not normally necessary on CDTV to use an entire Workbench startup-sequence. Assuming no
Assign statements are needed the minimum startup-sequence may be:

rmtm ; remove trade-mark
MyTitle ; executable for my title

A more typical Workbench 1.3 startup will need at least the following components (in no particular

order):

rmtm
setpatch >NIL: r
FF >NIL: -0
Assign MyVol: CDO:

bookit bv
MyTitle

; remove trade-mark
; patch layers etc

; speed up fonts
; assign logical volume that was hard disk
; to CD
; blank screen, centered Views
; run the title!

With these actions in the order above, the rmtm program will delay a few seconds and fade the
copyright notice. The screen will (if the preferences set in devs:system-configuration are black
screen and they most likely should), then be black. The CDFS then finds and launches setpatch,
FF, Assign, bookit, and finally MyTitle. This involves perhaps ten seconds of black screen before
MyTitle has a chance to run its title music and display its title screen.

The following order of events reduces the black screen considerably:

setpatch >NIL: r
bookit bv
FF >NIL: -0
Assign MyVol: CDO:
rmtm
MyTitle

; screen shows trademark
; screen shows trademark
; screen shows trademark

; screen shows trademark
; trademark fades
; black screen until titles appear

Your title may require a substantial load time, particularly if it involves invoking an authoring
system which must set itself up before it begins to run your series of commands.

The black screen can be eliminated almost entirely by using the keeper program. Keeper will
display an IFF picture of your choice (probably your logo) until another View is loaded, or it it
signaled from within your program, or it is launched a second time with the parameter QUIT. The
best position for the use of keeper depends on how long your title needs for its initialization, and
how tolerant it is to another View occupying display RAM. It must follow the rmtm command.

Games Unkeep The Keeper. There is an implicit Load View whenever a program opens
a screen and displays it. The only exception will be some games programs that address

256 CDTV Developers Reference Manual

35.2 Creating CDTV Applications Speeding Up Your Titles

the display hardware directly. Such programs will remove the keeper picture before they
start.

A title that requires as much Chip memory as it can sensibly expect to have will load with the
following example startup-sequence:

setpatch >NIL:
bookit bv
FF >NIL: -0
rmtm
keeper CDO:logo/MyLogo.ILBM
Assign MyVol: CDO:
MyTitle

As soon as MyTitle opens a display, the keeper task will terminate, close its View, and hand back to
MyTitle. To get the maximum screen memory it can, MyTitle will, during its initialization, include
the following code, which assumes a procedure called GetDisplayRamO-

/* various initializations */
task = FindTask("PicKeeper");
/* assuming task is found */
Signal (task, SIGBREAKF__CTRL_C) ;
GetDisplayRamO;
/* load and display titles etc */

If an authoring environment is used it will be safer to use the following outline startup-sequence.

setpatch >NIL: r
bookit bv
rmtm
keeper CDO:logo/MyLogo.ILBM
FF >NIL: -0
Assign MyVol: CDO:
keeper QUIT
MyTitle

The black screen time here will be precisely the time needed for the title to boot and open its first
screen. If you are certain that your title leaves enough memory free for the keeper View and can
still start properly, simply omit the second call to keeper.

There is no simple guide for startup-sequences except the need to organize events in such a way
that all initializations can be done without the user wondering if the system is dead.

Editing the startup-sequence is usually the last stage before pre-mastering a CDTV title. It has
some unpleasant possibilities to it. For example, a tiny slip in an Assign statement can produce an
expensive and useless disc. It should therefore be thought about in advance of the pre-mastering, use
the minimum set of commands possible, and interleave these with the rmtm and keeper programs
to produce the least user irritation. Some things will have to be guesswork. When running a title
on hard disk, the bookit program cannot be used. When a CDTV is booted from a floppy drive,
the trademark sign does not appear. It is a good idea to design the startup-sequence before making
the first Check Disc, even if this is intended to be used with a floppy or SCSI drive for further
development. That way, you can be reasonably sure that the loads occur in the right order and with
sensible timings.

The Preferences settings in devs:system-configuration are just as important as using bookit. It is
always safest to have completely null Prefs fields. For example, bookit will remove the pointer
during its life, but it will reappear as soon as the main program starts. Blanking the pointer should
not, therefore, be left to bookit.

Programming and CDTV Multimedia 257

35.2 Creating CDTV Applications . Speeding Up Your Titles

Distracting The User During Loading

There will be moments when data must be sought and loaded from the CD. The users may reasonably
expect that they will get some clues about what is happening. Expecting them to watch the front
panel light is not an adequate feedback. The traditional computer world solutions to this problem

include:

• Nothing.

• “Busy” icon.

• “Loading—please wait”.

• Writing dots to the display periodically.

• Graphic bar that fills as the load progresses.

Most CDTV titles will be multilingual and avoid any language specific screen prompts.

“Busy” signals and sound jingles are the easiest solution. Fancy animations to cover loads may
take longer to load and activate than the load time for the data they are masking. Jingles that occur
frequently can be irritating. It must be obvious to the most naive users that they are waiting for
something to arrive.

A good “busy” signal screen will have some animation, if only color-cycling, and indicate that a
request is being satisfied. Shopping may provide a good analogy. You order a CDTV from a shop
assistant who vanishes and stays vanished; you wonder if you have been forgotten and eventually,
you leave the store and buy the CDTV somewhere else. In a good store, the assistant will telephone
the order to the stock room and then distract you by showing you a whole range of CDTV titles you
may wish to buy. At least the assistant will say "This will take about five minutes. Why don’t you
look around and I’ll tell you when your CDTV is ready for collection.”

CDTV does not have a standard “busy” iconography like the “Zzzzzz” on Amiga Workbench 1.3 or
the hourglass on Windows™. Good equivalents on CDTV arc spinning CDs, graphics of movement
along rows of books on a bookshelf, elevators rising through several floors of a building. Since they
will be used often, they will be stored in RAM as sbox items and unpacked with the debox.library
functions when needed. In complex titles they will be context dependent, and show that a map is
being found, or a novel, or a musical composition.

The taiget should always be to minimize load times and inform users that their choice is understood
and is in progress.

Directory Structure And Disc Geometry
CDTV uses an international standard for directory and data arrangement known as ISO-9660.
Because the CDFS understands this system, it is not necessary for programmers to worry about it;
very few titles will address the ISO-9660 structures directly, but will rely upon the CDFS to handle
this.

For optimization of CDTV performance it is valuable to understand the basics of ISO-9660. The
ISO-9660 filing system is very simple. It is designed for a read-only medium and need not involve
the complexity required for file writing and update. This simplicity may be harnessed to achieve
the best possible performance from the medium.

258 CDTV Developers Reference Manual

352 Creating CDTV Applications Speeding Up Your Titles

Normally all files will consist of contiguous blocks of data. Each block is a logical sector of
2,048 bytes. (Other sector sizes are allowed, but the current buildtrack software uses 2048 byte
sectors) Files always start on sector boundaries, so that a file’s starting position from the beginning
of the ROM track will always be modulo 2048=0. The 180-9660 standard does allow for file
interleaving, but this will be a very unusual state on a CDTV title.

The root directory contains pointers to files at a logical block. A file may contain data or a directory.
The system is hierarchical, and permits directory nesting to a depth of eight. (This restriction does
not apply to the CDFS, which has extensions to allow many levels of directory.) In addition to
the root directory block there are “path tables”. Path tables allow quick access to directories, and
are usually held in memory by the CDFS. It follows that the most efficient file access under CDFS
happens when the path table can be used. This has a consequence that may appear strange.

Many Small Directories Beat One Large Directory. It is more efficient to use many
directories containing a small number of files than one directory containing many files.

Data should be organized to ensure that the laser has to move the smallest possible amount between
seeks.

The system performs best on single files, so that a complex file which contains all data (sound,
pictures, notes etc.) may be more efficient than a group of files containing separate component
elements.

In practice, only file transfers that require the highest level of optimization (e.g., CDXL files) will
be forced to cluster their data inside one file. Problems arise when reading from multiple files when
file A is at the hub of the disc and file B is at the periphery, because the laser may take up to 0.8
seconds to make its physical move between the inner and outer edge of 600 MByte disc.

The performance of a title on hard disk is not a reliable guide to its performance on a CD-ROM. The
organization of data under the Amiga Fast Filing System (FFS) on a hard disk is radically different
from the organization of data on a CDTV CD-ROM. Generally the hard disk will be much faster,
but this may not be the case with heavily fragmented files on large drives with slow seek times.
One of the advantages of the ISO-9660/CDFS system is its regularity and predictability. There is
no fragmentation.

A good question, then, is How do I lay out my directories for best performance?

The iso software on the Iso_Devpac disk creates a text file called “controlfile". This text file is used
by the buildtrack program to create the ISO-9660 directory structure, path tables, and data blocks
exactly as they will be arranged on the CD-ROM. The controlfile can be edited with a text editor.
The rules are simple: directories can be rearranged, file order can be changed, but files may not be
moved out of their directories. The iso program will pick up the file order from the AmigaDOS file
system on the hard disk. Since it is not possible to reorder directories on working hard disks, the
order may be arbitrary, or alphabetically sorted, or sorted by size (the default for files in a directory).

If we assume that directory Alpha contains data closely coupled to directory Theta, it is desirable
on the CD-ROM to have the data files in these directories as close together as possible. Note the
distinction here—the directories themselves are merely system pointers to data segments of one
or more sectors on the CD-ROM. However, buildtrack will allocate data segments to the files in
the order it is presented with the files. By keeping the directory’s file count low and positioning
closely-coupled directories together in the controlfile you can ensure that the data will be reasonably

Programming and CDTV Multimedia 259

352 Creating CDTV Applications'.Speeding Up Your Titles

close on the CD-ROM, and so eliminate unwanted laser moves between file accesses. You can also
change the order of files within a directory to minimize head moves between file accesses. The
relatively slow seek time of a CD dictates that getting into a “disc thrashing” situation is something
to avoid at all costs.

Compared to the working methods used on hard disks, this has some evident advantages, i.e.,
almost everything is under your control. The cost is a little extra effort after the data gathering and
programming are finished. Attention shifts to disc layout and optimization, and significant time
should be allowed for this in project planning.

A number of strategies exist for ensuring that the data sets are as close as possible.

Buildtrack
The “buildtrack” software can make an ISO-9660 image into an AmigaDOS file. This file can
then be examined with the isodir program. Isodir provides a full listing of each directory and
file’s position in the CD image. Where the program picks up a group of files in close association,
by merely checking the start sector for those files it is possible to calculate approximately how
long it will take to seek to each file before transfer of data can begin. We may discover, for
example, that a gap of 200 MBytes exists between file A and file B because there are several
large directories in between. This gap will cause a significant delay, and if file C lies close to
file A, then the traverse will happen a second time.

Naming Conventions
A second, less labor intensive technique is to apply naming conventions for directories and
files to ensure that an alphabetic sort will place the components in the best order.

Match Data Organization To Data Presentation.
An optimum CD geometry exists for any title, but this may be impossible to determine a priori
if thousands of branching decisions are make by the user. Normally, it will be possible to assign
priorities to data sets. For example, if a title is making a major change of focus, as for example,
when an Atlas program changes country or continent, the user may tolerate some waiting; it is
intuitive to think of going from one continent to another as involving delay. If that title takes
the same amount of time to go between adjacent streets the user will probably be irritated. This
is a case where keeping all mapping information in one directory, all text in another, all sound
in a third etc., is not helpful. It is better to break the directory structure down by continent,
country, and town, ensuring that the big laser moves happen where the granularity of the data
is largest. This requires no significant adjustments of the directory order on the CD. When fine
tuning the title, it may simply be desirable to change some file ordering, but even that is less
likely.

Speed Up by Duplicating
The perceived speed of a title may also benefit greatly if frequently needed menus, pictures, or
sound data files are duplicated in such a way that the current directory contains a copy. If all
the menus are neatly tucked away in a directory called “menus”, this is a traditional, sensible
and logical way of ordering data, but it may cause unwanted tracking backwards and forwards.

Keep Directories Small
For highest efficiency in the CDFS buffers directories, the number of files in one directory
should be restricted to forty.

260 CDTV Developers Reference Manual

35.2 Creating CDTV Applications Speeding Up Your Titles

Using CDXL To Load Data

Let’s say that at a certain point in a title’s progress on CDTV, it requires the following data to be
loaded into memory:

• 96,000 bytes of sound data.

• 2 pictures—64,032 bytes and 128,016 bytes.

• 938 bytes of text data.

This will require four calls to the AmigaDOS Open0,Read0 and CloseO functions, together with
error checking. Despite the efficiency of the CDFS, there will be a noticeable break between each
load. If the component data objects are widely separated on the disc, there may also be some
unwanted seeks involved.

If, at the simplest level, these files were to be concatenated with the Join command, the data would
be contiguous and would require only one OpenO and CloseO for access. However, it would still
require four ReadO calls to the various buffer positions.

The CDXL commands to cdtv.device allow a high speed DMA transfer of this data. (For a full
explanation of CDXL, refer to the “CDXL Overview” article in the CDTV Specifics subsection.)
The price for this gain in transfer efficiency is extra effort in design. It will be necessary to write
‘ software tools” to arrange the mixed data into a file and include the necessary information about
the size, order and nature of the data chunks within this structure.

The order in which the CDXL transfer list is constructed depends on what needs first to be displayed.
For example, assuming that the 640 x 200 x 4 picture is needed on the screen as quickly as possible,
it is placed first in the transfer list. The DoneCode callback item in the transfer list item for that
picture will not display the picture itself, but will signal the main process that the data has arrived.
The CDXL transfer will continue with no interruption:

void PicReady ()
{
Signal(MyTaskPtr,MySigBit);
}

Having established a way of finding out when the picture is ready, the main process can initialize
the CDXL transfer of the data and do other things until the picture actually arrives:

SendIO(MyloRequest); /* send CD_READXL command */

/* additional actions as required */
sigs=Wait (l<<MySigBit); /* picture ready when Wait completes */

LoadRGB4(SMyViewPort,6BufferColorTable,NumColors);
LoadView(&MyView);
/* picture now on screen and transfer still running */

This is the fastest way to get complex data from the CD-ROM into memory. Given that multimedia
applications often have associated sound, pictures, and other material, it is well worth the extra
effort (which is not great) in setting up the linked transfer list. The major effort involved is in
getting the associated data into one file, or if not into one file, into a series of contiguous sectors on
the CD-ROM. This technique absolutely depends on the data elements being sequential.

A more complex extension of this approach to data management is to slice up sound and picture
files and load a series of pictures transparently while a continuous stream of sound is being spooled

Programming and CDTV Multimedia 261

35.2 Creating CDTV Applications .'Speeding Up Your Titles

from the CD. This demands a very tight control of data sizes, sound playback frequency and other
timing considerations.

As a general principle, optimization of CDTV titles frequently depends on shifting the burden of
computation from run-time to the development stage.

Using Burst Mode

Burst mode is not a special function that you can switch in or out, and the term can give rise to
confusion. The CD mechanism and circuitry buffers sector transfers internally before sending the
data in a “burst” onto the data bus. This happens transparently. The consequence of it is that large
continuous transfers of data are more efficient than many short transfers. A second consequence is
that data transfer is not a linear time function.

Avoiding ILBMs

The IFF ILBM file format for pictures has been very successful in promoting easy exchange of
pictures between application programs. The first line from each of the picture’s bitplanes is run
length encoded, and then the second line and so on until the whole image has been converted. The
advantage of this scheme is that if a picture is decoded from a slow storage medium, each successive
line can at least appear with all its color and information intact.

Unfortunately on an unexpanded CDTV, the ILBM format requires the 68000 to parse the IFF file,
unpack the rows, reorder the color map and do various housekeeping tasks. The 68000 is running
in Chip memory, and is losing cycles to the custom chips and DMA. The result is a distinct delay
before the picture appears.

An older IFF picture format, the ACBM (Amiga Contiguous BitMap) provides a partial solution.
In an ACBM, the BODY chunk is replaced by an ABIT chunk which contains the data for each
bitplane in flat format. An Amiga Basic program called SaveACMB will convert ELBMs to ACBMs.
Developers using authoring systems should check whether their authoring system will read ACBMs.
If it will, substantial speed increases can be gained by using this format.

Developers who are coding titles themselves may want to consider whether they should bother with
the IFF format at all once the graphics work has been completed for pictures other than ANIMs. If
the title uses an arbitrary mixture of picture formats, it will be difficult to dispense with the header
information, but the more commonality that is imposed on all the data types used, the greater the
potential optimization available.

Generally, Intuition will not be used in CDTV titles because it is not designed for viewing and
operating from a distance of ten feet on a television screen. Programmers are more likely to create
their own custom Views, ViewPorts and RastPorts and render directly to these. From here it is a
small step to an arrangement of bitplane and color information that allows a single DMA transfer
of the data with no interruptions and no parsing.

262 CDTV Developers Reference Manual

Creating CDTV Applications . Speeding Up Your rules

Contiguous bitplane Color Information

date for picture

8 byte spare

RAM

(extra bytes

to avoid

DMAC

problems)

If the file format adopted conforms exactly to the layout shown above, the fastest possible load time

is obtained. This scheme relies on programmers taking control of their own graphics structures. If

memory requirements are tight, it is desirable in any case to manage an internal heap for picture
and sound buffers, with a variety of Views managing different display ratios.

For example, if327,744 bytes of Chip memory are allocated at start up, the space will allow for two

640 x 512 eight color picture buffers to be available at any time, or five 320 x 256 HAM pictures.

The load-and-display routines can be organized to give double*buffered displays over a wide range

of picture formats with very little processor use and no possibility of out-of-memory problems.
Unless a CD XL scheme is used for loading pictures, the normal scheme becomes reversed.

Normal

• Load Header.

• Examine Header.

• Set Up Screens And Windows.

• Move BitPlane Data Into Buffer.

• Apply Color Mapping.

Optimized

• Select Appropriate Buffer.

• Load All Data.

• Use ViewModes To Determine RastPort & ViewPort.

• Load Colors.

• LoadViewO.

The price for this is that the picture format is no longer compatible with paint programs and changes

may be difficult to make. So when designing software tools to take standard IFF format files and

transform them into optimized objects, it is worth the small extra effort required to make this a
two-way process.

Ideally the graphics engine for the title will be capable of loading all formats, and a very late stage
in development will “batch process” the picture files into the optimized layout.

Programming and CDTV Multimedia 263

352 Creating CDTV Applications Speeding Up Your Titles

Asynchronous Reads And Multiple Reads

Where possible, the multitasking power of the Amiga/CDTV system should be used to reduce
perceived loading times. One obvious example of this is asynchronous loading of data. While
something wonderful is happening on the screen, the next picture or sound is invisibly moving into
memory ready for rapid display. This can be achieved at three main levels:

• Process

• Task

• Device

The advantage of a process over a task is that a process can communicate with DOS and a task
cannot. Processes may be spawned from inside the main program, and talked to with signals,
semaphores, or messages. Alternatively, a process may be a separate program that is Run from the
startup-sequence, has a named Port, and hence may be sent messages from several multitasking
programs that constitute the title. This approach will be successful for relatively simple cases such
as audio management, but may become very complex for control of pictures.

Tasks are simpler (though not much simpler) to launch from within a program. Because they are
“locked out” from DOS, however, they lose the simplicity of being able to find and load a file. Tasks
can use the system devices—audio.device, et al.

The power of CDTV resides on the strength of the cdtv.device. The high-level facilities of the DOS
interface rely on low-level commands to cdtv.,device. The cdtv.device is not a filing system, and
consequently does not respond to file names or other file attributes. It requires commands to transfer
data at a logical rather than symbolic level.

The decision that programmers make about when to use a process, a task or a device call depends on
the degree of direct control they require, or the degree of binding between the main program and the
loader code. The use of processes and tasks provides generality, but requires very careful control of
task/process priority. Particularly under Kickstart 1.3, it is possible to create circumstances where
a separately launched task will never run. There may be circumstances at run-time when different
priorities apply. “Race conditions” can arise where the order of completion of operations can be
very complex under different loadings.

Using processes and tasks for asynchronous data handling is appropriate in a situation where, for
example, an authoring system allows external calls via ARexx but does not provide the facility
to handle large stereo sound files. It is unlikely to be the ideal solution in a complex multimedia
program which is seeking the highest possible control, because the order of operations has been
handed over by the programmer to the Exec task switching mechanism.

Asynchronous data loading with the cdtv.device is a simple matter provided that the location of the
file on the CD-ROM data track and its size, is known or can be determined. These two items of
information are available through the CDFS.

The first sector of the file is obtained by calling the DOS LockO function with a pointer to the name
and the access mode required, which is certain to be ACCESS-READ on a CD! Assuming the file
exists, LockO returns a BCPL pointer to a lock. After conversion to 680x0 pointer, theLock is in
fact pointing to a FileLock structure in memory. The second field of the structure is fLKey. This is
a LONG (32 bits) giving the sector where the file starts. No further information is needed to locate
the data because the file will not be fragmented.

264 CDTV Developers Reference Manual

352 Creating CDTV Applications .'Speeding Up Your Titles

The size of the file can be obtained by passing the original BPTR to the DOS function ExamineO
, which also requires a pointer to a FilelnfoBlock. The FilelnfoBIock structure field fib-Size
contains the file size in bytes.

A Global Structure Makes A World Of Difference. Obtaining the location and size of
a file by the method described above cannot be performed from a task, because it requires
DOS access. If your asynchronous loader is a sub-task, it should therefore be allowed to
access a global structure in which the main process places the location and size before
signaling the task, or be sent a Message which includes the information.

If this file will be needed frequently, it may be useful to store the position and size values, and in
many instances where programmer-defined data structures of fixed size are involved there may be
no need to call ExamineO to determine the size.

With the information to hand, one command to cdtv.device will load the file, or part of the file.

Assuming an IOStdReq structure has been allocated, initialized, and opened successfully on
cdtv.device, the following example performs a fast asynchronous load:

♦define SECTOR_SIZE 2048;

MyIOReq->Of fset = StartSector*SECTOR_SIZE;
MyIOReq->Length = FileLength+8;
MyIOReq->Data = &MyBuffer;
MyIOReq->Command = CD_READ;
SendIO(fiMylOReq);

Notice that SECTOR-SIZE may (rarely) be different on different CD-ROMs, but will currently be
2,048 bytes for CDTV discs pre-mastered with existing utilities. The extra eight bytes added to the
Read length is vital for direct transfers, and in this instance MyBuffer needs to be eight bytes longer
than its significant size. This is because the DMAC system may very occasionally (1% chance)
corrupt the last eight bytes of data transferred.

While the SendlOO is pending, other operations, including preparing and sending further requests
to the cdtv.device, may continue—monitoring user I/O, screen painting or playing memory resident
audio samples. Periodic calls to ChecklOO will report the status of this I/O request, and finally
WaitlOO will put your program to sleep until the operation is complete.

Given a handful of IOStdReq structures, a series of such commands may be queued to the device.
However, where the number of queued items or the complexity of the data becomes significant,
it may well be easier to set up a CDXL transfer list. But for most load operations, it will be
significantly faster to use the CD-READ command than to rely on CDFS which has to maintain a
broad accessibility.

Unfortunately, cdtv.device I/O will not work on a hard disk. It requires the presence of a CD-ROM,
and so usually will be brought into operation once the data are finalized and available on a Check
Disc CD-ROM.

Programming and CDTV Multimedia 265

HBI 352 HHHHI Creating CDTV Applications .Speeding Up Your Titles wmmm

Optimization Summary

There is remarkably little that can be done to optimize titles created with authoring systems that do
not include the relevant low-level facilities, except scrupulous attention to directory layout and disc

geometry.

For those not using authoring systems, the following summarizes what has been discussed.

• All titles, using whatever optimization, are vulnerable to poor layout.

• Custom file formats and internal memory organization can create a system in which data loading

can be optimized.

• Asynchronous loading of data which is known to be required next can eliminate many delays.

• The cdtv.device provides all the facilities needed to ensure that the flow of data into memory is
efficient in the foreground and possible in the background.

• Where possible, computation should be performed “off-line” during development.

• Careful thought given to data formats can simplify programs and radically improve perfor¬

mance. This is a data-driven system.

266 CDTV Developers Reference Manual

3JJ Creating CDTV Applications -.OptimalDisc Layout

Optimal Disc Layout

A primary key to improving the performance of a CD-ROM-based application is to eliminate as
many seeks as possible. While this can be done by economizing the title’s disc accesses, many
further gains may be realized by thoughtful layout of the files on disc. With some knowledge of the
ISO filesystem structure and taking advantage of the CDTV Device File System’s (CDFS) caching,
significant speed gains can be achieved, improving title performance.

ISO Structure

The structure of the ISO-9660 filesystem is covered in more detail in the “CDTV File System”
chapter. However, only some basic facts are needed to understand the techniques that follow.

ISO-9660 requires that files occupy contiguous sectors on the disc, permitting the entire contents of
the file to be scooped up in a single operation. Because of this, there are no "side-sectors” as there
are with AmigaDOS. Thus, there is no secondary seeking to collect block lists. The filesystem can
go straight from the directory entry to the file data.

ISO directories can also be thought of as a special form of file. Unlike AmigaDOS, which reserves
an entire disk block for each file descriptor, ISO packs together as many descriptors as will fit in
a single block. Directories that consume more than one block are stored, like files, in contiguous
blocks. In this way, an entire directory can be read all at once.

In order for a file to be found, the directory that contains it must be scanned. Directories themselves,
however, can be found by scanning the path table, which is loaded by CDFS upon disc insertion.

Cache Operation

CDFS has a rudimentary block caching system. Two sets of caches are maintained: one for data
blocks, and one for directory blocks. The sizes of both caches can be set though the Boot Options
(covered in the “CDTV File System” chapter).

The data block cache is a simple read-ahead cache. If a requested block is not in the cache, the
entire cache is dumped and refilled with the requested block and the N blocks following it. Thus,
the read-ahead cache’s greatest value is realized by doing sequential reads.

The directory block cache is a bit more intelligent. When a directory is loaded, its blocks remain in
the cache until the cache is full. If filled when a free cache entry is required, the least recently used
entry is dumped and recycled. When a new directory block needs to be read, it is requested through
the above-described data cache. Thus, a directory scan can cause the data cache to be dumped.
Note however that, if directories are grouped together, the data cache gets dumped only once. Any
further directory block requests that immediately follow are satisfied from the data cache.

The cache operation is described here only to give you the most general of ideas as to how organize
your discs. The actual internal workings of CDFS are private. Commodore reserves the right to
alter the caching mechanism in the future to improve performance.

Programming and CDTV Multimedia 267

353 Creating CDTV Applications .Optimal Disc Layout

Analyzing Your Title

Before you can knowledgeably lay out your disc, you must first know which files and directories
your title accesses, and the order in which it does so. Some of these file accesses are non-obvious.
An example would be the DOS ExecuteO function, which first loads C:Run before loading the

specified program.

One tool that can help is PickPacket, a public domain program that wedges into any DOS device
and prints a report of all DOS operations requested of the device. PickPacket's output can be used
to more accurately determine your title’s sequence of reads and file accesses. You can also use
the Commodore-supplied tool OptCD, which uses the built-in statistics-gathering features of CDFS

V26.

Goals

Finally, before you start laying out files, you should decide what you’re trying to accomplish.
Obviously, you’re trying to optimize disc accesses, but optimizing for one case may leave other

cases in very poor shape.

While collecting the raw data, use the title yourself (or better, have a disinterested party do it) and
determine which parts seem “slow”. In particular, ask these questions:

• Does the title start slowly (more than 5 seconds)?

• Does moving from one area to another seem to take a long time?

• If it has a search facility, does it take a long time to find something?

• Is there any part of the title that seems to take longer than it should?

If you feel the title is slow in a specific area, you may wish to pay particular attention to the reported
disc activity when the title is operating in the area of interest.

Disc Layout

Once you have an idea of where your disc accesses are occurring, and which ones you wish to
optimize, you can start laying out files. Though you can’t specify a particular block number when
creating an ISO image, the mastering software will let you specify the order in which files and
directories are laid out, giving you a high degree of control over file grouping.

While no single approach will yield the ultimate optimized disc, some general guidelines will yield
good results.

The startup-sequence can be the biggest offender in your boot times. Group all the commands
that appear in the startup-sequence together on the disc in the order in which they appear in the
startup-sequence, and put the startup-sequence itself immediately before all of them. This will
cause the commands to be pre-loaded into the read-ahead cache when the startup-sequence is read.
Keeping your startup-sequence short also helps a great deal.

Group small files together (8K or less), and group them in the order in which they’re accessed. In
this way, when the first such file is opened, the rest will be pre-loaded by the read-ahead cache.

268 CDTV Developers Reference Manual

3JJ Creating CDTV Applications .‘Optimal Disc Layout

Also, consider recoding your application such that all the small files are accessed at once, rather
than interspersed with accesses to large files. You may even wish to consider caching all such files
in RAM, thus requiring them to be read but once.

Open all disk-based shared libraries at once, and group them on the disc together in the order in
which they’re opened.

Don’t be afraid to have large directories on an ISO disc. Recall that ISO directory entries are packed
together; thus, more than one entry can be stored in a disc block, and these blocks get cached by
filesystem. A large directory, if accessed frequently, will remain cached. Opening files happens
more quickly from a cached directory.

You may care to experiment with leaving system files (libraries, devices, fonts, etc.) in the root
directory. At boot time, if DOS can’t find, for example, a directory named “libs” in the root of the
boot volume, it will assign LIBS: to the root, and all libraries will be searched for there. By doing
this, you can keep the system from consuming directory cache entries for “libs,” “devs,” “fonts,”

1, and c. Note that there is a tradeoff here between more efficient cache usage and a really
cluttered root directory. You’ll have to weigh both sides and decide accordingly.

The Startup-Sequence must be located in a directory called “s”, or the system won’t find it.

If your title will have Workbench icons on it, we strongly recommend you group all the .info files
together, and lay them out in alphanumeric order. ISO mandates that directory entries be sorted
in ascending ASCII order, which means the DOS function ExNextO will encounter them in that
sequence. Therefore, when Workbench starts searching a directory for icons, it will see them in
alphanumeric order. If they are laid out in this way on the disc, all the icons will be loaded in a
single contiguous read, and they will appear on screen very quickly.

If you have files which are seldom accessed, you might place them in a separate directory, and
locate those files and the directory away from the more-frequently accessed files and directories.
This way, you won’t have a “speed bump” which needs to be skipped in the middle of your critical
files. Keep in mind, however, that doing this can make these files harder to access, and could make
operations involving these files slower than they were before.

If your tide uses CDXL, you might also consider moving all the CD XL files in a separate directory
and isolating them, too. Since CDXL doesn’t go through the filesystem, it’s to your advantage to
have CDXL files located away from “normal” files.

You might even consider dispensing with the filesystem entirely and using CDXL for all your data-
loading needs. It’s extremely flexible and blindingly quick. Search your title for file operations that
could be done using CDXL instead.

Disc Access

While disc layout is important, so also is the manner in which your title accesses the disc.

Make your read lengths as long as possible. If your application reads data in very tiny chunks
(less than IK or so each), the most efficient use of the system is not realized. The filesystem and
the CD-ROM prefer to deliver the largest number of bytes possible. If your application requires
piecemeal reads, consider incorporating buffered I/O routines. Most C compiler packages include
them with their link libraries. Set your buffer sizes to 2K or more.

Try to minimize “file hopping” (switching frequently between two or more files) as it is seek¬
intensive. Try to process individual files in their entirety.

Programming and CDTV Multimedia 269

3.6.1 Manufacturing CDTV Discs :Pre-Mastering and Mastering for CDTV

Pre-Mastering and Mastering for CDTV

Introduction

Preparation of titles for the CDTV player presents new challenges to the developer. Combining
graphics, animation, text, digitized IFF sound samples and CD audio (CD-DA) samples in the same
application provides endless opportunities for creation. Multimedia applications for CD-ROMs
also require new production methods. This document will describe the various steps and techniques
necessary for taking an application which runs on an Amiga SCSI hard disk and transferring it to a
CD, eventually adding CD-DA sound along the way, and having that CD replicated.

Finally, we will discuss how the C-Track Emulator can simplify and expedite this process.

We will assume that the application runs correctly on an Amiga 2000 under Workbench 1.3. The
code, data, and IFF sound files are on an AmigaDOS SCSI hard disk. The CD-DA sound tracks are
on a DAT tape or, alternatively, on a 3/4" U-matic tape.

Overview of the Pre-Mastering and Mastering Cycle

Some developers may prefer to avoid the pre-mastering job. All approved CDTV pre-master centers
will accept your AmigaDOS SCSI hard disk, a set of Amiga DOS floppies, or a set of floppies made
with a backup program. Many will also accept AmigaDOS files on QIC-150 or other tape formats.
There is a small charge for that service, and there will be a short turnaround time for the ISO
formatting. The advantage to the developer is that the a pre-mastering center will have a fair
amount of expertise in creating an ISO-9660 image and can create the image efficiently.

We can divide the process into a number of steps. Here follows a brief description of the steps.
Each step will be explained in detail.

Preparing the Tools

Before starting, you should verify you have all the hardware necessary to complete the job as well
as the appropriate software tools.

ISO Control File Builder

The ISO tool scans the directory of your AmigaDOS drive and builds an ASCII control file with the
disc structure and file hierarchy. You may wish to modify and optimize this control file manually.

Programming and CDTV Multimedia 271

3.6.1 Manufacturing CDTV Discs :Pre-Mastering and Mastering for CDTV

Creating an ISO Image

The Buildtrack tool reads a control file and creates a binary ISO image file. This file can be stored
as a file on an AmigaDOS disk. Alternately, you can use the same Buildtrack tool to create a
block-for-block ISO image on another SCSI hard disk. The entire SCSI disk will be used—you
cannot create a block-for-block image on a second partition of an AmigaDOS drive.

Creating a Test Disc

The ISO image file must now be transferred to a pre-mastering system, such as a Meridian CDPro.
The SCSI disk connects directly to the Meridian. The Meridian then prepares a test disc, using a
write-once CD-ROM drive such as a Yamaha PDS. The Meridian can also accept DAT tapes or 3/4"
U-matic tape for CD-DA.

Testing

The Pre-Mastering Center will return a test disc to you. You should verily this disc’s operation in a
CDTV through vigorous testing.

Mastering and Replication

Satisfied with your testing, you tell the Pre-Mastering Center to prepare a pre-master tape. This tape,
either 9-track or 8 mm, containing a logically formatted ISO-9660 image, is sent to the replicator
of your choice. The replicator creates a master stamper that is subsequently used to press the CDs.
Replicators also provide packaging services and ship your CDs, in jewel cases or long boxes, to
you.

Description of the Production Cycle

Preparing the Tools

Hardware

The basic platform necessary to the developer for production is fairly simple: an Amiga with at
least 3 Mbytes of RAM and one or (preferably) two SCSI hard disks.

Amiga: You can use either an Amiga 2000 (or 2500) or an Amiga 3000. Remember that CDTV
currently contains Workbench 1.3 in ROM, and your application must not contain any WB 2.0-
specific code. If you have an A2000, make sure you use an A2091 controller. The A2090 and
A2090A controllers may have difficulty in controlling more than one SCSI drive.

SCSI hard disk: We have verified and recommend using the following makes of high-capacity SCSI
drives:

Seagate ST4766N 600 Mbyte formatted capacity
Seagate ST2502N 410 Mbyte form atted capacity

272 CDTV Developers Reference Manual

3.6.1 Manufacturing CDTV Discs :Pre-Mastering and Mastering for CDTV

Preparing the SCSI Drives

Up to 6 SCSI devices may be daisy-chained behind one A2091 controller. For the physical
connection, follow the instructions in the 2091 User Manual. Be sure to set the device number on
each drive, avoiding two drives with identical numbers.

Use the HD tool box to partition your drives, and verify that they are correctly recognized.

Bulldtrack

Buildtrack lets you create an ISO image file on two different devices. You can create a block-for-
block image on a SCSI hard disk or you can store the ISO image file on your AmigaDOS hard disk
as an AmigaDOS file.

The block-for-block method

This will usually be chosen by developers who do not have direct access to CD mastering
equipment. Once the block-for-block image is created on a hard disk, you simply send the
hard disk to a pre-mastering center. They will read the data onto their mastering equipment
and prepare a test disc.

If you choose this method, the disk must be connected as SCSI device 5.

The AmigaDOS file method
This allows you to store your ISO image as an AmigaDOS file on any AmigaDOS device. This
method may be preferred in the following situations:

• if you are in a networking environment, with the mastering equipment connected into the net.
You can then transfer the image file to the mastering equipment via the networic.

• if you are physically near mastering equipment, you can transfer the image file to the mastering
equipment via serial or parallel lines.

• if you want to keep more than one ISO image file in your system, fortesting or control purposes.

Software tools

The ISO Dev Pak diskette contains all the necessary tools to create an ISO-9660 image.

Preparing your application disc
You must include a few important items on your application disc:

a) devs: directory. To avoid the “Workbench 1.3 Copyright Commodore” message at boot
time, include a system configuration file in the devs directory with the four workbench
colors all set to black.

b) c: directory. Copy the files “rmtm” and “bookit” from the c: directory of the ISODevPak
diskette to the c: directory of your application disc.

c) root directory. Copy the file CDTV.TM from the ISODevPak diskette to the root directory
of your application disc.

d) s:startup-sequence. Add the command “nntm” to your startup-sequence in the s: directory
of your disk. (If you include the Setpatch command, put rmtm just after Setpatch.)

You should also place the bookit command in your startup-sequence. Bookit reads the Prefer¬
ences settings (including palette, screen centering, and other information) from the non-volatile

Programming and CDTV Multimedia 273

3.6.1 Manufacturing CDTV Discs :Pre-Mastering and Mastering for CDTV

RAM (NVR) of the CDTV unit. The arguments of the bookit command specify the settings to

read.

The best place to put bookit is the very first line in the startup-sequence. We recommend that
you use bookit bv in the first line of the startup-sequence so that you will change all of the
Workbench colore to black, erase the pointer and center the screen while the trademark image
is still on-screen. Then, when rmtm removes the trademark image, the user will be looking at
a black screen rather than being surprised by the blue-and-white Workbench screen.

ISO Control File

The ISO Control File Builder automatically scans your AmigaDOS drive and builds a control file
for the actual CD image builder. This control file is used by BuildTrack to build a CD-ROM track
image on an AmigaDOS hard disk or block-for-block disk image on a SCSI disk.

The Control File Builder will build your new ISO file based on the pathname you provide. If,
as an example, you wish to build the entire drive, you would simply type ISO <drive name:>.
If you want to build only a directory, just give the full path that you wish to build, e.g., “ISO
dhO:mydirectory”. Always keep in mind that the Control File Builder will build an exact image of
an ISO CD. The Control File Builder will construct the ISO directory for you and will optimize that

directory structure for you.

Refer to the readme file on the ISO DevPak disk for details on using the iso command.

Optimizing the controlflle.

The controlflle is ASCII text, so you can read it or edit it if you wish. You may also wish to relocate
where files and/or directories reside on the ISO CD-ROM to optimize performance. The ISO utility
can sort files by file size (default), file name, or keep the files in the same order as on your source
AmigaDOS hard disk. If your application could operate faster with the files in some other order,

you are free to change the order of the files.

For exammple, if file Pic.l is to be loaded and then the sound files Noise.l, Noise.2 and Noise.3 are
to be played sequentially, you might choose to put all four files in one directory, in that order.

What you must not do is change the directory in which a file resides. If you wish to do so, you
must physically change it on your source hard disk, then run ISO again. If you move a file from
one directory to another manually, the BuildTrack program will return a “file not found” error.

Creating An ISO Image

Two options are available for creating ISO images: a single track image, or a block-for-block disk
image. First let’s briefly review the format of an ISO disc.

274 CDTV Developers Reference Manual

3.6.1 Manufacturing CDTV Discs :Pre-Mastering and Mastering for CDTV

ISO Disc Structure

An ISO-9660 standard CD-ROM is divided up into a number of variable-length tracks. These tracks
are recorded in a spiral from the center of the CD outwards. The spiral is three miles long on a full
disc.

Track 0, known as the subchannel”, is reserved for the system. It contains information such as:

• the type of system on which the disc can boot

• the Table of Contents of the disc (TOC). The TOC describes the number of tracks on the disc,
their location on the disc, and if the track contains CD audio or data

Track 1 is the usual location for all data files. Here are stored yourprogram’s code, graphic files, IFF
sound files, animations, etc. Again, this track is as long as needed to contain all your application's
data.

Tracks 2—99 are for CD-DA or other data tracks. These tracks are also of variable length. You may
determine how to store your CD-DA information on these tracks. You may put one “song” or voice
narration per track. Or you can have one long track with numerous samples. The CDTV Device
Driver provides the means for playing an entire track, or a certain portion of a track, beginning at
a precise location (mm:ss:ff, where mm is minutes, ss is seconds, and IT is frames [75 frames per
second]).

Preparing the Hard Disk

If you wish to execute a low-level write of the ISO-9660 image on a SCSI hard disk drive, the
bytedrive program must be used. Do not perform this step if you are writing the ISO-9660 image
to an AmigaDOS file.

A Low-level Write Destroys All. The low-level write to your target SCSI hard disk will
eliminate the formatting and all of the data on your target disk. Do this only on a harddisk
that you can overwrite.

The syntax of the bytedrive program is:

run bytedrive scsi.device <unit number>

cunit number>

The SCSI address of the SCSI hard disk drive to write the ISO-9660 image to.

For example, if the SCSI hard disk drive is configured to SCSI address 5:

run bytedrive scsi.device 5

Note that bytedrive requires both your application disk and the target disk to be attached to the same
A2091 controller.

Now from the CLI type:

mount DR1:

This mounts a special volume, drl: which is addressed by BuildTrack.

Programming and CDTV Multimedia 275

3.6.1 Manufacturing CDTV Discs :Pre-Mastering and Mastering for CDTV

Creating An ISO Image file

The Buildtrack utility lets you create an ISO disc image file of one track on the destination device
specified in the ISO command. The syntax of the buildtrack program is:

buildtrack <control file> [-w] [-b <buffers>]

< control file>
Specifies the name of the control file created by the ISO program. This is generally “controlfile”.

-w

Suppress warnings related to ISO file naming conventions.

-b <n>
Specifies <n> number of buffers to use. 200 is the suggested value; the default value is 64.
You may increase or decrease this value based on the amount of RAM available.

For example, to build the ISO-9660 image based on the control file "controlfile", suppressing file
name warnings and using 200 buffers:

buildtrack controlfile -w -b 200

The ISO-9660 image will be created, based on the control file and source path.

This process will require several minutes, depending on the size of the application being pre¬
mastered.

Running FIXTM

In order for your CDTV application to boot directly, you must include a special file called CDTV.TM
in your root directory. This file is provided on the ISO DevPak diskette.

The fixtm utility, on the same diskette, is used during pre-mastering to update the ISO image file
with key information. You should run fixtm when you have finished the buildtrack utility.

The syntax for the fixtm command is:

fixtm [-f<filename>] [-d<scsiunitnumber>] [—q] [-h]

-f<filename>
Specifies the AmigaDOS file to be updated. If this option is used, by default no Y/N confirmation
prompt will be issued.

-d<scsiunitnumber>
Specifies the SCSI unit where the ISO 9660 image resides.

-q
Generates a Y/N prompt from fixtm before updating the ISO-9660 image.

-h
Displays a help message.

For example, to update an ISO-9660 image file called Work:MyCDTVApp/ISOImage, you may
enter.

fixtm Work:MyCDTVApp/ISOImage

276 CDTV Developers Reference Manual

3.6.1 Manufacturing CDTV Discs :Pre-Mastering and Mastering for CDTV

In this case, fixtm will locate the file ISOImage, and ask you if you want to update the image or not.

Alternatively, you may enter the command:

fixtm -fWork:MyCDTVApp/ISOImage

In this case, no prompt will be generated. This method is recommended if you want to include fixtm
in a script.

If no filename is specified, fixtm will search for an ISO-9660 image on SCSI units 5 and 0. If an
ISO-9660 image is located, the prompt:

Device <n> contains an ISO image, volume name <volume name>.
Update this image? (y/n)

will appear. Enter

y

If an ISO 9660 image is not found on SCSI unit 5 or 0, fixtm will prompt:

Input the name of AmigaDOS image file to be updated:

Enter the filename of the ISO-9660 image file. This should be the destination path entered at the
"Volume ISO9660" prompt of the ISO program.

At this point, the CD pre-mastering is complete.

Cutting a Test Disc

The ISO image must now be transferred to a pre-mastering facility to cut a test disc.

Media for Data Transfer

Currently two methods exist for physically transferring the image to the disk of the pre-mastering
system: sending a SCSI hard disk drive and a tape backup.

Ship the drive
The most direct method is to ship the SCSI drive to the pre-mastering center. This method,
while primitive, is fast and convenient. We have found that SCSI drives are surprisingly robust.
If properly packaged, they can be sent via DHL, FedEx or equivalent and are rarely damaged
en route.

The pre-mastering center simply plugs in your SCSI drive, block reads the data across to the
Meridian’s drive, and returns the drive to you along with the test disc. You will have to specify how
many bytes of data are on the drive.

Ifepe backup
Alternatively you may back up your application to tape. We have tested the A3070 SCSI tape
drives from Commodore, and they work well. Their major limitation: they only accept tapes
of 150 Mbytes maximum. If your application goes beyond 150 Mbytes, you will have to split
up the image, using the BRU utility.

Programming and CDTV Multimedia 277

3.6.1 Manufacturing CDTV Discs :Pre-Mastering and Mastering for CDTV

The A3070 can only be used to store a track image. No software is currently available to transfer
the block-for-block ISO image from a SCSI drive to the A3070.

• We have been unsuccessful with Exabyte drives. Our testing has found the hardware to be
unreliable. However, Exabyte is one of the most popular formats for European replicators.

• We are investigating solutions to back up to a DAT drive, but have yet to find an inexpensive
and reliable system.

• No matter what format you choose, make sure you indicate the total size of the ISO file you
send to the pre-mastering company. Otherwise they will not know if they have transferred the
entire file to their pre-mastering equipment.

Including CD-DA

Most CD-ROM replication companies will produce a mixed-mode CD-ROM/CD-AUDIO disc. If
your title includes CD-Digital Audio (CD-DA), you will need to supply high quality audio tapes to
the replicator. Make the best quality recording you can because the digital audio process reproduces a
nearly perfect recording—any noise, glitch, snap, crackle and pop will also be perfectly reproduced.

You may submit your audio tracks on almost any medium, and that audio does not need to be
digitized. All CD replicators got their start in the audio business, so they have a lot of experience
in turning music into digital data. The two best formats are: 3/4" U-Matic PCM format or a DAT
sampled at 44.1 KHz. These two formats can be digitally transferred with no loss of audio quality.
An analog medium such as a cassette, or reel-to-reel tape is also acceptable, but these formats must
be digitized, with a possible (but not likely) decrease in sound quality.

A sixty second lKhz test tone recorded at Odb should be at the beginning of every audio master
tape. This tone allows the audio technician to calibrate his equipment to give you the proper audio
level on the CD.

If you are using a DAT as a master tape, always remember that you must record at 44.1 Khz in order
to do a digital transfer. Otherwise the DAT must be re-sampled to the proper sampling rate which
takes more time and can degrade the sound quality.

Also, if you are using DAT, remember to use the START ID markers at the beginning of each audio
track. This allows the technicians to see exactly where the track begins on the DAT. Try to number
the START ID at 2 so that the tracks on the DAT correspond to the tracks on the CD (remember that
per the Yellow Book Specification, track 1 may only contain CD-ROM data).

Regardless of the media you use for your audio, the replicator will need to know where to place the
tracks on the CD. Always give the replicator a track sheet that shows the order of the tracks on the
CD, the length in minutes and seconds for each track, and the period of separation between each
track (which is called the “gap”). You may also specify a specific location (in CD time) to start
a particular track if you have that information listed in the track sheet. Refer to the sample Track
Sheet in Appendix A of this article.

A CD-ROM track and a CD-Audio track are required to have a gap of four seconds in CD time
as per the Yellow Book Specification. However, the gap between two audio tracks may be of any
length. The default gap time between audio tracks is two seconds, you may specify any other
length, even zero seconds, if you require it. Should you need a different gap time, be sure to note it
on the Track Sheet. Refer to the sample Track Sheet in Appendix A of this article.

278 CDTV Developers Reference Manual

3.6.1 Manufacturing CDTV Discs.Pre-Mastering and Mastering for CDTV

Testing

Now comes a crucial step—the verification of your test disc, before replication in quantity.

"Gold” Disc

The pre-mastering facility will prepare a write-once CD, sometimes called a Gold Disc. This disc
can be used for testing purposes.

You may want to ask for more than one copy of the Gold Disc to test in multiple sites.

Testing

We strongly suggest that you test your application thoroughly. Points to consider

• Try to run through all possible paths to your code and data.

• Load times. Verify that loading of graphics and audio is properly co-coordinated. Make sure
you don’t start playing an audio file too soon, or too late.

• Arumation/video. Verify your animation or video sequences. If things are too slow, you might
consider using alternate compression routines.

In Case Of Trouble

If you find problems, you will have to modify your code, then prepare another ISO image, i.e.,
repeat the steps in the "ISO Control File" section. Do not pass GO. Do not collect $200.

However, all is not lost. If you have transferred all your data, IFF sound files, animations, code,
and even CD-DA data onto the test disc, and discover timing problems or other bugs in your code,
don’t throw away your test disc\ You can modify your code on your A2500 development system,
and recompile there, then transfer your code to a floppy diskette.

Now connect an A1011 floppy disk drive to the rear of your CDTV reader, insert your test disc
in the CDTV, insert your floppy disk, and boot from the floppy. Your program on the floppy can
access the data on the CD. It can play CD-DA tracks on the test disc as well. Thoroughly testing
your application in this environment can avoid extra trips to the pre-mastering center for test discs.

Mastering And Replication

Having thoroughly tested your application on a write-once CD, you are ready for the final steps:
mastering and replication.

Producing The Master Tapes

While it is possible to create a “master stamper” directly from a write-once CD, most replication
centers prefer to receive a 9-track tape for input. This tape is prepared by the pre-mastering facility
that made your test disc.

The master tape is an ANSI-labeled, 9 track, 1/2 inch tape containing an image of your applications
code and data. The file may be split up over 2-4 reels, if the application cannot reside on one.

Programming and CDTV Multimedia 279

3.6.1 Manufacturing CDTV Discs :Pre-Mastering and Mastering for CDTV

Preparing CD-DA Tapes

If your application includes CD-DA audio, separate CD audio tapes will be created. CD Audio
master tape* preferably have contiguous files with no files broken up across reels. Each 9-track tape
holds approximately 138 Mbytes. You can write multiple files to each tape, but all the files must be

contiguous.

Replication

Upon receipt of the master tapes, the replicator begins work. A detailed description of the numerous
steps involved is beyond the scope of this document. But here is a brief overview.

1. The tape’s image is transferred to a large hard disk system. That system adds extra information,
such as the synch pattern, the header, and error detection and correction data. Each sector is
thus expanded from 2048 bytes to 2352 bytes.

2. The sectors are transferred to the Laser Beam Recorder. This signal-processing rack and
recorder adds error correction and subcode data, and performs the low-level encoding. The
subcode data tells the CD-ROM drive where the head is located, independent of the sector
data. The Recorder then exposes the master disc, a glass disc coated with a very thin layer of
photoresist

3. The master is developed, and the photoresist which was exposed to the laser beam is etched
away, leaving the pits. It is then coated with a thin layer of silver. The master can now be read,
and is carefully tested on a special player to ensure quality.

4. A “stamper” is created to actually press the CDs. Nickel is electroplated onto the silver surface
of the master. The nickel shell is then separated from the glass master, creating a mirror image
of the master.

5. The stamper is placed on a molding machine. Molten polycarbonate is pushed between it and
a mold. This polycarbonate is given an aluminum reflective layer, and a protective coating is
added. It is now a CD.

6. A label is printed on the CD, either via silk screening or pad printing. The CDs are put through
a final quality assurance inspection. Finally, the replicator packages the CD, in a jewel case or
a long box, and shrink-wraps the product.

The C-Trac Emulator

The C-Trac emulator (CTrac) enables the developer to shorten his development cycle and reduce
his pre-mastering costs.

Hardware And Installation

CTrac is described in detail in the “CTrac Emulation System” article in the “Creating CDTV
Applications” section of this manual. It is a board that plugs into the slot of an Amiga 3000 or
Amiga 2500 and is connected via a ribbon cable to the motherboard of a CDTV unit.

The developer must format a hard disk under the Qwik File System (QFS). The QFS disk will be
used to store the ISO-9660 image of your data necessary for the emulator. You can also store regular
AmigaDOS files on the QFS drive. The AmigaDOS file system will mount the AFS drive, with

280 CDTV Developers Reference Manual

3.6.1 Manufacturing CDTV Discs :Pre-Mastering and Mastering for CDTV

its own file system, and you can use standard AmigaDOS commands to manipulate and access the
data. Thus the same physical hard disk can hold both the ISO image and the AmigaDOS data and
code.

CD-DA Files

Furthermore, you can store CD-DA data on the AFS drive. The CD-DA files are seen as normal
files by the file system.

Emulatings CD

When a special command is typed, the emulator activates. (Your application will be running in the
memory of the CDTV unit) It looks for the s:startup-sequence file on the ISO image of the hard
disk, loads that file into the memory of the CDTV, and starts to run.

Whenever the CDTV wants to access the CD, the emulator board intercepts the call. It reads the
data from the QFS disk in the Amiga, emulating the seek time of a CD. It also slows down the
transfer rate from the disk to the memory of the CDTV, to approximate the 150 Kbytes/second used
on the CDTV.

The CTrac system allows you to test your application in an environment which provides response
times very similar to those of a test disc. It can save you thousands of dollars by avoiding repeated
cuts of test discs.

Appendix A

Sample Track Sheet

TITLE: Space Waste DEVELOPER: Fly by Night Multimedia

CD
TRACK#

ROM/
TRACK NAME

ROM
AUDIO

GAP
TIME

TIME
START

01 Awesome Game CD-ROM STD 2 SEC
02 Sound Effects Track AUDIO 0SEC. 04:15:00
03 Inna Godda Davida AUDIO 0SEC NA
04 Fly Me To The Moon AUDIO 0SEC NA

Notes:

• Even though it seems obvious always be sure to write down the title and customer name at the
top of the Track Sheet

• In this sample Track Sheet track 1 contains data per the Yellow Book CD-ROM standards.
Also notice that the 2 second post-gap is required (also per the Yellow Book).

• Track 2 contains sound effects that will be played back via absolute Minute/Second/Frame
reference (using PlayMSF). The track will begin at exactly 4 minutes 15 seconds CD time. Gap
time (except for the mandatory CD-ROM gap) is not relevant since the program is addressing
the track starting at an absolute location.

Programming and CDTV Multimedia 281

3.6.1 Manufacturing CDTV Discs :Pre-Mastering and Mastering for CDTV

• Track 3 is a soundtrack that is played during the opening sequences by playing the track (using
PlayTrack). Absolute location is not needed since the PlayTrack function will start playing at
the beginning of the track and will stop when directed by the program. Notice that the gap time
is zero. The PlayTrack function will start playing at the beginning of the gap, not the beginning
of the music. By using a gap time of zero, the music will start playing immediately instead of

after the gap.

• Track 4 is another soundtrack that is played exactly like track 3.

• Be sure to write down the total number of tracks on the bottom of each Track Sheet that you
submit. You wouldn’t want a replicator to miss a track.

282 CDTV Developers Reference Manual

3.7.1 Debugging CDTV Applications debugging CDTV Software I

Debugging CDTV Software

This article presents some general techniques for debugging software on the Amiga and CDTV.
Before you start programming the Amiga or CDTV, you should read the development guidelines
in the introductions of the Addison-Wesley Amiga ROM Kernel Reference and Hardware manuals,
or the General Amiga Development Guidelines and the Developers Introduction articles at the
beginning of this section. These guidelines contain important rules which are applicable to all
Amiga programs, configurations, and operating system releases. Additional symptom-specific
information on Amiga programming problem areas can be found in the Troubleshooting Your
Software article that follows. The most common Amiga programming errors are covered in these
articles.

The debugging tools, linker libs, and examples referred to in this article may be found on the 2.0
Native Developer Update disks. If you are a registered developer, these disks should be available
from your local developer support organization. If you are not a registered developer, check
developer bulletin boards for information on where you can purchase these disks in your area.

Preventing Bugs

The best way to debug software is to prevent bugs in the first place. To help prevent bugs, here are
some rules you should always follow when writing Amiga and CDTV software:

1. Know Your Tools. Familiarize yourself with the debugging tools that are available. If you are
familiar with these tools, it is very simple to check for memory loss, loss of signals, improperly
nested Forbids, stack size problems, misuse of IORequests, overwriting of allocations, and
many other problems. Read the tool docs that come with the 2.0 Native Developer Update
tools and familiarize yourself with the tools that are available.

2. Use Enforcer and Mungwall while developing your code. If you are developing on a machine
without an MMU, upgrade your machine. If that isn’t possible, at least use Mungwall. Use
of Mungwall and Enforcer can weed out the kind of memory misuse bugs that make software
“flaky”. Assembler programmers should test for register misuse with Scratch. Software
publishers and QA departments should insist that software pass testing with these debugging
tools.

3. Read the latest documentation, autodocs, and include file comments for the functions and struc¬
tures you are using. Read development guidelines, troubleshooting guides, and compatibility
notes. Use the system software and hardware as it was intended and documented.

4. Always check return values from system functions. Provide a clean way out and useful
messages if something fails.

5. C Programmers should use function prototypes for all functions whether they be system func¬
tions or homemade. It’s a little extra work but saves time in the long run by immediately
catching most types of improper function calls (missing arguments, swapped arguments, etc.)

Programming and CDTV Multimedia 283

3.7.1 Debugging CDTV Applications .'Debugging CDTV Software

6. Keep a version number in your code, and update the version number whenever changes are
made. The 2.0 VERSION command can print out the version of any executable which contains
a specially formatted version string. Use the tool Bump rev to generate C and assembler include
files containing a full version string, with date, for use in your program. Or at least code a
minimal version string as follows:

InC:

UBYTE *vers="\$VER: programname 36.10";

In Asm:

vers DC.B '\$VER: programname 36.10',0

7. Document the code changes for each version. This can be done manually or by using a
document control system such as RCS (Fish Disk 451). RCS will keep diffs of all changes, and
will allow you to recreate previous versions of your code if necessary.

8. Write your code in a modular fashion, and use the highest level system functions which provide
the functionality you need. Spaghetti code is hard to modify, hard to maintain, and hard to
debug.

9. Test your code! Test on different configurations, under different OS’s, under low memory
and error conditions, and in conjunction with various watchdog tools. Test your product with
MungWall, in conjunction with Enforcer if possible, to catch uses of null pointers and freed
memory.

10. If you want to be able to use the debugging tools on a CDTV system, your CDTV titles should
be designed to run comfortably in a 1-meg Chip RAM 68000-based 1.3 OS CDTV, with enough
RAM left over to allow booting from a floppy and running of debugging tools. However, CDTV
developers should not assume that this is enough. If CT)TV starts to ship with 2.0 in ROM,
will your title be compatible ? And is your title compatible with Fast RAM and accelerator
add-ons ?

11. Design your CDTV title with memory constraints and memory fragmentation in mind. Your
title will not run property if the memory it needs becomes fragmented. Compatibility and
debugging will also be difficult if your title uses all of the memory that is available. While
designing your title, think of methods to limit or eliminate repeated large memory allocations
and deallocations. If possible, allocate audio buffers and bitmap planes once in a size large
enough for all intended uses, and recycle without deallocation and reallocation.

284 CDTV Developers Reference Manual

3.7.1 Debugging CDTV Applications .Debugging CDTV Software

Special CDTV Debugging Problems

CDTV applications are debugged in much the same manner as any Amiga application. However,
there are some special differences.

How To Use Debugging Tools with a CD

In general, native debugging is best accomplished by booting your CDTV from floppy with a
modified Workbench disk. The modified Workbench disk should start (or allow you to start) the
desired debugging tools, assign all logical directories and current directory to CDO:, and then start
your application software.

To create a debugging boot floppy for CDTV, make a copy of Workbench, throw out unnecessary
fonts and tools (such as Diskcopy, Format, Preferences, Edit, etc.), and replace them with the
debugging tools you need.

You will probably need a serial terminal (or parallel printer) connected to your CDTV to monitor
and capture remote debugging messages from the various tools. Modify the Workbench disk’s
startup-sequence to provide the functionality you need. You may want to open a NEWSHELL
before the ENDCLI of the startup-sequence.

You might want to create a script to start up a set of debugging tools:

TNT
run >NIL: Wackl.O
run >NIL: Mungwall
;Enforcer
execute openscreen.w

; trap software errors for debugging info
; run simple disassembler
; munge free memory
; uncomment only if you have an MMU
; A wedge into OpenScreenQ created with LVO

and a script for starting your CDTV application:

assign sys: CDO:
assign c: sys:c
assigns: sys:s
assign 1: sys:l
assign fonts: sys:fonts
assign devs: sys:devs
assign libs: sys:libs
cd CDO:
My_App

Start up your debugging tools, and then start your application. For additional information, you
may want to compile a special version of your application software with its own remote—kprintfQ
or dprintfO)—debugging statements. This special version could be started from a floppy disk.
It is sometimes useful to make the entire debugging and application startup automatic, including
startup of a tool for disassembling (such as Wack), and perhaps an editor for taking notes, and the
application itself. With such an automatic floppy boot disk startup, your application will have a
good chance of loading into the same memory areas each time so that problem addresses reported
on successive test runs will be consistent.

Programming and CDTV Multimedia 285

3.7.1 Debugging CDTV Applications .Debugging CDTV Software

Lack of MMU

The lack of an MMU makes it impossible to use the most powerful and timesaving debugging
tool. Enforcer, on CDTV. Enforcer can catch illegal reads and writes to low memory, non-existent
memory, and ROM. In conjunction with Mungwall, Enforcer can also help to catch use of other
unallocated, uninitialized, and already-freed memory. These types of bugs are the most common
causes of intermittent and hard-to-reproduce problems.

Applications that only reference the CD as a filesystem disk may be tested with an MMU, Mungwall,
and Enforcer by running the title software on your 68020/MMU or 68030/MMU Amiga development
system. Ifyourtitle needs to access files from CDO:,the CDO: drive of your CDTV can be networked
to your development system with Par net by Doug Walker, John Toebes, and Matt Dillon (available
on Fish Disk 400). Par net uses a specially modified parallel cable to connect two Amigas for
filesystem access. Install the Par net software on your CDTV boot floppy and on your development
system. Start the netpnet-server on both machines, and then mount NET:CD0 on your development
machine. If necessary, you can assign the name CDO: on your development machine to NET:CD0.

Keep That CD Command Handy. If you need to change current directory to the CDO:
drive from your development system, you may need to use the 1.3 CD command.

Alternately, you may be able to install a third-party A500 68030 add-on in your CDTV to provide
native MMU debugging capability and additional RAM. This will allow you to test with Enforcer in
the full CDTV environment In any case, don’t forget to also test your software often and thoroughly
on the base 68000 and 1-meg memory configuration.

Lack of Extra Memory

Debugging tools require memory to run, including the overhead and stack of a CLI process (one
per tool), and probably the Chip memory of the Workbench/CLI screen kept open by running tools.

If your title uses all available memory, you will not be able to do much native CDTV debugging
without some type of memory add-on. However, if your title does not access special CDTV libranes
or exec devices directly, you may be able to debug your problem by running your title on your
development system as described above. If you are trying to debug memory allocation failure
problems, use tools such as EatMem or Memoration to reduce the amount of memory available to

your application.

Personal Memory Cards. You may use the Personal Memory card for CDTV to add
64K or 256K of extra RAM to your CDTV for debugging purposes. This extra memory
can be used to hold the debugging tools—Mungwall, TNT, etc.—that otherwise might not
fit To add a 256K Personal Memory card as extra RAM, use this command:

addmem eOOlOO e3ffff

286 CDTV Developers Reference Manual

3.7.1 Debugging CDTV Applications .Debugging CDTV Software

Workbench May Be Inaccessible

Common printfO debugging may not be practical in native debugging of a CDTV title because the
output window for the debugging text may be inaccessible. Use remote debugging tools whenever
possible. Some printfO tools, if used individually, may be redirected to SER: or PAR: for remote
output. See the information below on remote serial and parallel debugging. In some cases, you
may want to redirect your application’s own debugging output to your own display. One way to do
this would be to write your own debugging output function which would use sprintfO or the exec
function RawDoFmtO to format the output, and then MoveO/TextO the output characters to the
RastPort of your choice.

No Information When Crashing

When a crash occurs, CDTV reboots instead of putting up an alert. To gain more information about
crashes, use the TNT tool in your startup. TNT installs a traphandler and will try to put up a large
debugging information requester if a processor exception occurs. This is valuable when debugging
on any system.

TNT Bombs With Debuggers. TNT is incompatible with trap-based single-step debug¬
gers, so you must turn off TNT before using such a debugger.

General Debugging Concepts

It is hard to generalize about debugging because different kinds of bugs often require very different
approaches. A bug report horn a user is quite different from a bug that you’ve just introduced in
new code! However, all debugging requires some common steps:

1. Define the problem.

2. Narrow the search and find the bug.

3. Understand, and fix the bug.

4. Make sure you didn’t just break something else.

Steps 3 and 4 are the same for all types of bugs, so we’ll cover those last. Steps 1 and 2 require
different approaches for different kinds of bugs. Here are some examples.

You’ve added or written new code and something is broken.

1. Define the problem.

Make sure you can reproduce the problem so you’ll know when it’s gone. Define as “when I do
xxx the program does (or doesn’t do) do yyy.” You might want to write this down in case you get
sidetracked while working on your code.

Programming and CDTV Multimedia 287

3.7.1 Debugging CDTV Applications debugging CDTV Software

2. Narrow the Search.

If you just added a couple of lines of code, and have the same development environment as before,

check your source code first Check for misuse of existing variables, improper error checking,

improper use of system or internal functions, and possible changes to conditional program flow.

If you can’t spot the problem, slow it down and see what’s going on. Use a source-level or

symbolic debugger, or printfO/kprintfO/dprintfO debugging, with delays added if necessary. One

particularly useful type of debugging statement is:

printf ("About to do xxx. k *=%ld Ptrl*$%lx... \n", k,Ptrl) ;
Delay (50);

The delay gives the debugging line time to be output and gives you a chance to read it before the

action is takea See mydebugJi from the 2.0 Native Developer Update debugging examples for an

easy way to add debugging statements like this to your code in a neat conditional manner. If you

can’t printfO while your application is running, then link with debug.lib or ddebug.lib to use the

serial kprintfQ or parallel dprintfQ.

By stepping through or printing out your actions and variables, you will generally be able to isolate

the bug. If you have isolated the area but still can’t find the bug, re-read the autodocs for the routines

you are using and re-read the Troubleshooting Your Software article. Check all other uses of the

variables in the problem area. If all else fails, isolate the problem code by writing the smallest

possible example that demonstrates the problem.

If the problem is not present in the smallest possible example, then go back and check your original

code. Check for global and local variables with the same name. Check for possible overwriting of

important program variables, especially those preceded by writable arrays.

If your code has multiple tasks or processes, you may be misusing signal-related structures and

functions. Remember that signals are task-relative. One task cannot WaitO (or WaitlOO or

WaitPortO. or DoIOO on a MsgPort or Message whose port signal was allocated by a different

task. Such incorrect code may accidentally work if the desired message is already sitting at the port,

but don’t count on it.

If you still can’t isolate the problem, contact CATS for assistance or upload the example to BIX.

BIX Is Quick. One of the quickest ways to find bugs in a small source code example is to

upload the source to BEX amiga.dev/main and ask what’s wrong with it.

Your code has intermittent problems that you can’t pin down, or
appears to trash something under certain conditions.

1. Define the problem.

It is difficult to reproduce intermittent problems, so try to force the problem to show itself. First try

running your program with Enforcer and Mungwall. If you don’t have an MMU, use WatchMem

and Mungwall, but be prepared to crash a lot. If you don’t get any hits, try the same thing during

low-memory situations, heavy multitasking and device I/O, etc. If you are doing Exec device I/O,

try 10-Torture to catch premature reuse of IORequests. Hopefully, you will pick up a hit.

288 CDTV Developers Reference Manual

3.7.1 Debugging CDTV Applications debugging CDTV Software

2. Narrow the Search.

If you have no Mungwall/Enforcer hits, try some debugging statements or source-level debugging
to follow the values of your variables. Make sure that all of your structures are cleared before
use. Use TStat to see if your stack usage is high. Check all possible areas where you might be
overwriting the end of an array or otherwise trashing memory. Re-read the autodocs for the system
functions you are using.

If you are reusing an IORequest too soon, check your source code (debugging would just slow
down your execution and might give the IORequest a chance to complete, masking the problem).

If you have Enforcer hits, use debugging statements or a debugger to step through your code while
running Mungwall and Enforcer (or WatchMem). This will allow you to pinpoint where the problem
occurs.

Your code works fine on one system but not on another. Or you’ve
received a bug report from a user.

1. Define the problem.

Determine what is different or special about the system your program fails on. Remember that
if a floppy drive is attached, less free memory is available. Or the difference may be that some
type of add-on accelerator board, different chip revisions or different OS ROMs is present. Other
considerations include memory configuration and addresses, amount of free Chip and Fast RAM,
processor type, custom chip version, expansion peripherals, OS version, and other software in use
when the problem occurred. The ShowConfig program on the 2.0 Install and 2.0 Native Developer
Update disks is useful for printing out much of this information.

The memory address ranges can be particularly important now that some Amigas and add-ons are
available with memory beyond the original 24 bit address limit. For example, overwriting a byte
array by one byte now has a good chance of trashing a 32-bit address variable, or even your routine’s
return address on the stack.

If a user reports a problem, find out the exact version of your software she is running, the exact
configuration of her hardware, and exactly what she was doing prior to the problem. Try to get her
to come up with a step-by-step procedure for reproducing the problem. Get her phone number and
keep it with a record of all of the information you can get on the problem. Keep bug reports in an
organized form. If you get two reports on the same problem, you can be pretty sure that the problem
really exists, and the combined information may help you track it down.

2. Narrow the Search.

Attempt to reproduce the problem. If you can’t reproduce it immediately, try stepping through the
problem area while using Enforcer and Mungwall. If you don’t get any hits, try again with less free
memory and other tasks running. Try to reproduce the user’s configuration and environment. If
you still cannot reproduce the problem, ask the user to come up with a simple repeatable sequence
which causes the problem on a stock system.

Read Troubleshooting Your Software for information on the causes of many problems that only
show up in certain configurations or environments.

Programming and CDTV Multimedia 289

3.7.1 Debugging CDTV Applications debugging CDTV Software

If all else fails, look carefully at your code for misuse of variables or system functions, and for
improper error-checking or cleanup after any allocation or open. Check that all cleanups are done
in the proper order, i.e., in reverse order.

D. Your program loses memory.

1. Define the problem.

First make sure that you are actually losing memory. Use Flush (from the 2.0 Native Developer
Update disks) and the system command Avail to check for actual memory loss. Under 2.0, you may
combine these two by using the FLUSH option with the Avail command.

Set up your system so you have a shell window available and can start your program without moving
any windows (re-arranging windows causes memory fluctuations). Test for memory loss as follows.
First, run Flush and Avail (or Avail FLUSH) a few times to make sure nothing else in your system
is causing memory to fluctuate. Once you consistently get the same memory values, perform the
following steps.

1. Flush.

2. Avail (write down the Fast, Chip, and total memory free).

3. Start your program and use its features.

4. Exit your program.

5. Flush.

6. Avail (the fast, chip, and total free to previous figures).

7. If you have a loss, repeat the procedure to see if the loss is consistent.

Again, you can combine Flush and Avail under 2.0 as Avail FLUSH.

Testing with Flush or Avail FLUSH will flush out all properly closed devices, libraries, and fonts
which have been loaded from disk by your program and other programs. This allows you to check
for actual memory loss.

Note that under 2.0, since the audio.device is ROM-resident but not initialized by the system until
it is opened by someone, the first program to use the audio.device or speech capabilities will appear
to cause a small but permanent memory loss. This is the memory allocated for the audio device’s
base structures. If your program uses audio or speech, first use the Say program or SPEECH: before
performing the above memory loss test so that the audio.device's initial memory usage will not
interfere with your tests.

One special memory loss problem is a continual loss of memory while a program is running. This
is generally caused by not keeping up with IntuiMessages or not freeing Locks.

290 CDTV Developers Reference Manual

3.7.1 Debugging CDTV Applications‘.Debugging CDTV Software

2. Narrow the search.

Try the above test again, but this time just start your program and exit immediately. If you do
not lose memory, try several times more, using some of your program’s features, and attempt to
determine which part of your program causes the memory loss. Check your source code for all
opens and allocations, and check for matching frees and closes, in the proper order, for each of
them.

The size of a memory loss can also be a clue to the cause. For example, a loss of exactly twenty-four
bytes is probably a LockO which has not been UnLockO’d. Knowing the exact size of the loss
(as determined with Flush and Avail) is important when you try determine which allocation is not
being freed. The 2.0 Native Developer Update disks and the Addison-Wesley Amiga ROM Kernel
Reference Manual: Includes and Autodocs both contain a Structure Reference chart that lists the
size of each system structure.

Some additional tools on the 2.0 Native Developer Update disks can help determine where memory
losses occur. You can use MemMon to record the relative memory usage as you test various parts of
your program. Snoop can be used to record all memory allocations and frees on a remote terminal,
after which SnoopStrip can strip out all matching pairs. Mungwall contains an enhanced snoop
option with SnoopStrip-compatible output for tracking only the memory allocations of a particular
task or tasks. MemUst, which outputs the system memory list, can also be useful when debugging
memory loss and fragmentation.

The Wedge program, which can restrict its reporting to the function calls made by a single task
or list of tasks, can also be used to monitor the allocations and frees done by your task (however,
Wedge's output is not SnoopStrip-compatible). By inserting debugging statements in your code,
you can mix status messages:

About to do xxx with Wedge

or

Mungwall SNOOP output

Examine the output for an allocation which matches the size of your loss. Use D/O's WEDGELINE
option to generate command lines for Wedge.

Removing Bugs

Earlier it was mentioned that there were four basic steps to debugging:

1. Define the problem

2. Narrow the search and find the bug

3. Understand, and fix the bug

Programming and CDTV Multimedia 291

3.7.1 Debugging CDTV Applications -.Debugging CDTV Software

4. Make sure you didn’t Just break something else

Steps 1 and 2 have been covered individually for various types of bugs. Here are steps 3 and 4 for
all bugs. This is the easy part (finding the bug is the hard part). These steps are the same for most

debugging problems.

3. Understand, and Fix the Bug.

When you find the bug, make sure you understand it. Don’t just try something else. If you are
having a problem with a system routine, read the autodocs and chapter text for that routine. Consult
the Troubleshooting Your Software article for similar problems.

When you understand what is wrong, fix the problem, being especially careful not to affect the
behavior of any other parts of your program. Carefully document the changes that you make
and bump the revision number of the program. Note your changes in the initial comments of the

program, and in the area where the changes were made.

4. Make Sure You Didn’t Break Anything New.

Try to reproduce the problem several times and make sure it is gone. Thoroughly test the rest of
your program and make sure that nothing else has been broken by your fix. Test your program in
combination with watchdog tools such as Mungwall and Enforcer.

Debugging Tools

This section will summarize the purpose and use of various types of debugging tools. Consult the
debugging tool docs on the 2.0 Native Developer Update disks for additional tools and documenta¬

tion.

1. Enforcer, Mungwall, and Other Watchdog and Stressing Tools

Watchdog and stressing tools can alert you to hidden and intermittent problems in your code.
The MMU-based Amiga debugging tool, Enforcer, provides debugging and quality assurance
capabilities far beyond what was previously possible. It is now possible to find bugs even in
code that appears to be working perfectly—the kinds of bugs that could cause serious problems on
different configurations. Enforcer is able to trap improper low memory accesses, writes to ROM,
and accesses of non-existent memory—problems which are generally caused by use of freed or

improperly initialized pointers or structures.

When used in conjunction with a free memory invalidation tool such as Mungwall, additional illegal

memory uses are forced out into areas trappable by Enforcer.

Another extremely useful testing tool, especially for assembler programmers, is Scratch by Bill
Hawes. One of the most surprising compatibility problems seen is improper use or dependence on
scratch registers (D1.A0.A1) after a system call. Scratch allows you to invalidate the contents of
these scratch registers after system calls so that improper usage of these registers in your code may

be brought out.

292 CDTV Developers Reference Manual

3.7.1 Debugging CDTV Applications .‘Debugging CDTV Software

It is also useful to test your software with stressing tools such as EatMem, Memoration, and
EatCycles in conjunction with Enforcer because Enforcer will help to catch use of unsuccessful
allocations immediately.

All software should be tested with these tools during development, and should be required to pass
a test with Enforcer in conjunction with Mungwall, Scratch and IO-Torture before being released
and distributed.

2. Symbolic and source-level debuggers

Symbolic debuggers allow you to trace and single step through your code, and examine or change
your variables and structures. The source-level debuggers which are provided with some compilers
allow you to trace and single step your code at the source-level after compiling with special flags.
Debuggers can often be used in combination with other tools such as Mungwall and Enforcer to
detea exactly where a problem is occurring.

3. PrintfO, kprintfO serial, and dprintfO parallel debugging

This simple method of debugging allows you to monitor where you are, what your variables contain,
and anything else you care to print out. PrintfO debugging is suitable for any process code that
is not in a ForbidO or DisableO (printfO breaks a ForbidO or DisableO). KprintfO (serial) and
dprintfO (parallel) debugging is more flexible and can be used in process, task, or interrupt code.
The kprintfO function is provided in the debug.lib linker library. The parallel version, dprintfO, is
provided in the ddebug.lib linker library. See the debug.lib kprintfO autodocs for more information
on the types of formats handled by kprintfO and dprintfO-

KprintfO outputs to the serial port at the current serial port baud rate. Generally, kprintfO is done
at 9600 baud with a terminal, or another Amiga running a terminal package connected to your serial
port with a null modem serial cable.

However, it is possible to kprintfO to yourself (i.e., to a terminal package running on your own
machine) if you have a modem attached to your serial port, and your terminal package set to the
baud rate of your modem. It is also possible to use a loopback conneaor to route your machine’s
serial output to its own input Obviously, if the problem you are debugging causes you to crash, a
remote terminal is a better choice. The ASCII capture feature of your terminal package can be used
to capture the kprintfO debugging output for later examination.

Remote (kprintfO/dprintfO) debugging is extremely useful when combined with other remote
debugging tools such as Enforcer and IO-Torture because your own debugging statements will be
interspersed with the remote output of the other debugging tools, allowing you to track what your
program is doing when problems occur.

PrintfO/kprintfO/dprintfO debugging can be conditionally coded more conveniently by using an
include file such as mydebug.h (see the DevCon disks). Mydebug.h eliminates the need for messy
#ifdef and #endif lines around your debugging statements by providing the conditional macros
D(bug()), D2(bug()), and DQ(bug()) which take printfO-style format strings and arguments in their
inner parentheses. One handy feature of these macros is that your debugging statements can be be
quickly changed from printfQs to kprintfQs or dprintfQs by simply setting a flag in mydebug.h
and recompiling.

Programming and CDTV Multimedia 293

3.7.1 Debugging CDTV Applications'.Debugging CDTV Software

Example:

D(bug("I'm here now and a=%ld",a));

4. Other ways to debug low-level code

If you can’t link with debugJib, low level code can also be debugged by inserting visual or audio
cues to let you know where you are. DebTones.asm (in AmigaMail Volume 1, September/October
1989and on the 2.0 Native Developer Update) demonstrates a small audio tone macro suitable for
debugging low level code. Another common method is flashing the power LED (see togLled.asm),
or doing an Intuition DisplayBeepO to flash the screen.

5. Specialized debugging tools

A variety of specialized debugging tools are available for monitoring and debugging such things as
system function calls, device I/O, process status, memory usage, and software errors. These tools
can be used without recompiling your program and can provide valuable debugging information.
The usage of several prominent tools will be summarized here. See the debugging tool docs on the
2.0 Native Developer Update disks for additional information and usage of these and other tools.

IO-Torture and 10-Torture.par

IO-Torture is used to check for premature re-use of outstanding IORequests. This is especially
useful for checking any code which does asynchronous device I/O.

Devmon

Devmon allows you to monitor device I/O at the exec level. This can be very useful when debugging
your own device code, or code that uses any other exec device.

Wedge

Wedge allows you to wedge into almost any system function and monitor the calls to that function by
all tasks or a selected list of tasks. If you know how to use Wedge, it can sometimes be much quicker
to do Wedge debugging than to add your own debugging statements and recompile. You can easily
answer questions like "Was that library open successful ?" and "Was that file found ?" by wedging
functions like OpenLibraryO and OpenO. Wedge command line arguments are complex—do not
attempt to write a Wedge command line yourself. Instead, use the LVO command’s WEDGLINE
option to generate a Wedge command line for the desired function.

294 CDTV Developers Reference Manual

3.7.1 Debugging CDTV Applications .-Debugging CDTV Software

LVO

LVO is a multipurpose tool. It requires the label FD: assigned to a directory containing the Amiga
FD files (also available on the 2.0 Native Developer Update). LVO can be used to list LVO offsets,
list relevant FD file lines, generate command lines for Wedge, and even guess at which system
function contains a particular ROM address.

Example Wedge command line generation (redirected to a file):

LVO >openlibrary.w exec OpenLibrary WEDGELINE

You may want to edit the generated Wedge command line file before executing it as a script. By
default, the command line will be set up so that the memory pointed at by all address register
arguments will be displayed by Wedge. Since some DOS functions use a data register for address
arguments (such as the name of a file being opened), you will probably want to modify the LVO-
generated Wedge line for such DOS functions so that the memory pointed at by D1 (the filename
in this case) will be displayed. To do this, edit the third hex mask (PTRS) so that the second bit
from the right is on (i.e., change 0x8000 to 0x8002). You only want to see the memory pointed at
by actual address arguments. See the Wedge docs for more details.

LVO's new ROMADDRESS option can be very useful when you are crashing or getting Enforcer
hits at a ROM address. This new option is used in combination with the Owner tool. Since ROM
addresses can be very different even on different models running the same version of Kickstart, you
must do the following two steps on the machine where your problem is occurring.

• First use Owner to determine which ROM library module "owns" the address.

• Then use LVO’s ROMADDRESS option to find out what function entry of that library is closest
to that address. This can help you determine what kind of bad structure or pointer you are
passing to cause the crash or hit in ROM.

Memoratlon (by BUI Hawes)

Memoration allows you to selectively deny memory allocations to a particular task. This allows
you to thoroughly test the failure path at every point in your program.

Scratch (by BUI Hawes)

Scratch allows assembler programmers to test their code for misuse of scratch registers Dl, A0, and
A1 after system calls. Scratch thoroughly trashes the contents of Dl, A0 and A1 after system calls
to catch assembler application code that is improperly using or failing to refresh these registers.
Such improper register use by assembler code is a primary cause of compatibility problems.

TStat

TStat allows you to monitor the PC, registers, signals, and stack usage of another task. TStat grabs
the saved taskswitch-time state of another task and displays it in a shell window. The -tickdelay
option causes TStat to repeatedly examine the state of the other task every tickdelay 50ths of a
second. You can use TStat’s new NOCl'KL option (for no control characters in the output) and
redirect TStat to a file, PAR:, or SER:. TStat is useful when checking for unfreed signals,mismatched
ForbidsO/PermitsO, and stack usage problems.

To monitor MyProgram constantly to the serial port ?,

TStat >SER: MyProgram NOCTRL -0

Programming and CDTV Multimedia 295

3.7.1 Debugging CDTV Applications debugging CDTV Software

How to Use MMU Watchdogs and Other Remote
Debugging Tools

Setup for Serial Debugging

Hardware:
When hooking two Amigas together, use a straight RS-232 cable with a null-modem adaptor, or use
a null-modem cable. When hooking up an Amiga to another type of computer or terminal, you may
or may not need the null-modem (crossed lines) depending on whether the other machine’s RS-232
port is designed to be basically a sender or a receiver. Avoid connecting lines which are not directly
related to RS-232 because different computers have various power supplies and grounds on these
other lines. One type of null modem debugging cable is wired as follows:

Amiga Terminal
1 - 1
2 3
3 2
7 7

5,6,8 - 20
20 - 8

Software:

For remote debugging at 9600 baud, set the sending machine’s Preferences to 9600 baud, and use
a 9600 baud terminal or an Amiga running a 9600 baud terminal package (preferably with ASCII
capture capability) as the receiving machine. Note that other baud rates can also be used for most
serial debugging because normal serial kprintfQs do not modify the serial SERPER register and
are therefore output at the last baud rate your serial hardware was set to. Test your setup by copying
a small text file to SER: or try the ktest program from the 1900 DevCon disks. The output should
show up on the remote terminal.

Applications can output serial debugging statements by using kprintfO from C or KPrintF from as¬
sembler and linking with amiga.lib and debug.lib. See the debug.lib autodocs for more information.
Serial input functions arc also available. Also see the mydebug.h conditional debugging macros on
the 1991 DevCon disks.

Serial Watchdog software setup:

Make sure your test machine is set to the same baud rate as the remote terminal you are connected
to. Turn on the ASCII capture of your remote terminal.

For machines with 68030 or 68020+MMU:

[RUN] Mungwall (removable with CTRL-C, or BREAK n if RUN)
[RUN] IOJTorture
Enforcer ON

For non-MMU machines (warning—encourages bad software to crash!)

[RUN] Mungwall {removable with CTRL-C, or BREAK n if RUN)
[RUN] IOJTorture
[RUN] WatchMem

296 CDTV Developers Reference Manual

3.7.1 Debugging CDTV Applications debugging CDTV Software

Local Serial Debugging

Hardware:

If you have a modem attached to your serial port, it is possible to capture your own serial debugging
output locally. This setup can be useful as long as the problem you are debugging is not one which
crashes the machine.

Software:

Run a terminal package at your modem’s baud rate to capture the kprintfQs. You probably won’t
be able to test this setup by copying a file to SER: (since the terminal package probably has an
exclusive open on the serial device). Instead, use a small program like ktest (on the 1991 DevCon
disks) to test your setup, or, if you already have an MMU watchdog installed, try an illegal memory
accessor such as Lawbreaker. Use the terminal package’s ASCII capture feature to capture your
debugging output.

Serial Watchdog software setup:

Same as for remote serial debugging, but first start up a terminal package on the test machine, at
the baud rate of the attached modem, with ASCII capture turned on.

Setup for Parallel Debugging

Hardware:

To set up for parallel debugging, attach a parallel printer to the Amiga’s parallel port and turn the
printer on.

Connect Or Hang. If no device is attached to the parallel port, parallel debugging
statements will hang waiting for the port hardware.

Software:

Some debugging commands have options for parallel rather than serial output Examples include
Enforcer.par, Mungwall.par, IO_Torture.par, and Wedge with the ’p’ option. Also, your can send
your own debugging statements to the parallel port by using dprintfO from C, or DPutFmt from
assembler, and linking with ddebug.lib and amiga.lib. On the 1991 DevCon disks, see dtestasm
for an example of calling DPutFmt from assembler, and mydebug.h for debugging macros which
can use printfO, kprintfO, or dprintfO.

Parallel Watchdog software setup:

For machines with 68030 or 68020*MMU:

[RUN] Mungwall.par (removable with CTRL-C, or BREAK n if RUN)
[RUN] IO_Torture.par
Enforcer.par ON

For non-MMU machines (warning—encourages bad software to crash!)

[RUN] Mungwall.par (removable with CTRL-C, or BREAK n if RUN)
[RUN] IO_Torture.par
[RUN] WatchMem

Programming and CDTV Multimedia 297

3.72 Debugging CDTV Applications troubleshooting Your Software

Troubleshooting Your Software

Many Amiga programming errors have classic symptoms. This guide will help you to eliminate or
avoid these problems in your software.

Audio—Corrupted Samples

The bit data for audio samples must be in Chip RAM. Check your compiler manual for directives
or flags which will place your audio sample data in Chip RAM. Or dynamically allocate Chip RAM
and copy or load the audio sample there.

Character Input/Output Problems

RAWKEY users must be aware that RAWKEY codes can be different letters or symbols on national
keyboards. If you need to use RAWKEY, run the codes through RawKeyConvertO (see the
Intuition chapter of the Amiga ROM Kernel Reference Manual: Libraries & Devices) to get the

proper translation to correct ASCII codes.

Improper display or processing of high-ASCII international characters can be caused by incorrect
toIowerO/toupperO conversions, or by sign extension of character values when switched on or
assigned into larger size variables. Use unsigned variables such as UBYTE (not char) for strings
and characters whenever possible. Internationally correct string functions are provided in the 2.0
utility.library.

CLI Error Message Problems

Improper error messages are caused by calling exit(n) with an invalid or missing return value n.
Assembler programmers using startup code should jump to the startup code’s exit with a valid
return value on the stack. Programs without startup code should return with a valid value in DO
Valid return values such as RETURN_OK, RETURN-WARN, RETURN_FAIL are defined in
<dos/dos.h> and <dos/dos.i>. Values outside of these ranges (-1 for instance) can cause invalid
CLI error messages such as “not an object module”.

Usoful Hint. If your program is called from a script, your valid return value can be
conditionally branched on in the script (i.e., call program, then perform actions based on
IF WARN or IF NOT WARN). RETURN-FAIL will cause the script to stop if a normal
FAILAT value is being used in script.

Programming and CDTV Multimedia 299

3.72 Debugging CDTV Applications troubleshooting Your Software

CLI Won’t Close on RUN

A CLI can’t close if a program has a Lock on the CLI input or output stream ("*"). If your program
is RUN >NIL: from a CLI, that CLI should be able to close unless your code or your compiler’s
startup code explicitly opens

Crashes and Memory Corruption

Memory corruption, address errors and illegal instruction errors are generally caused by use of
an uninitialized, incorrectly initialized, or already freed/closed pointer or memory. You may be
using the pointer directly, or it may be one that you placed (or forgot to place) in a structure
passed to system calls. Or you may be overwriting one of your arrays, or accidently modifying or
incrementing a pointer later used in a free/close type function.

Be sure to test the return of all open/allocation type functions before using the result, and only
close/free things that you successfully opened/allocated. Use watchdog/torture utilities such as
Enforcer and MungWall in combination to catch use of uninitialized pointers or freed memory,
and other memory misuse problems. Use the debugging tool TNT to get additional debugging
information instead of a Software Error requester. You may also be overflowing your stack—
your compiler’s stack checking option may be able to catch this. Cut stack usage by dynamically
allocating large structures, buffers and arrays which are currently defined inside your functions.

Corruption or crashes can also be caused by passing wrong or missing arguments to a system call
(for example, SetAPen(3) or SetAPen(win,3) instead of SetAPen(rp,3)). C programmers should
use function prototypes to catch such errors.

If you use short integers, be sure to explicitly type long constants as long (e.g., 42L). (For example,
with short ints, 1 « 17 may become zero). If corruption is occurring during exit, use printfO (or
kprintfO, etc.) with Delay(n) to slow down your cleanup and broadcast each step. A bad pointer that
causes a system crash will often be reported as an standard 68xxx processor exception $00000003
or 4, or less often a number in the range of $00000006-B. Or an Amiga-specific alert number may
result. See <execlalerts.h> for Amiga-specific alert numbers. Also see “Crashes—After Exit”
below.

Crashes—After Exit

If this only happens when you start your program from Workbench, then you arc probably
UnLockingO one of the WBStartup message waJLocks or UnLockingO the Lock returned from
an initial CurrentDirO call. If you CurrentDirO, save the lock returned initially, and CurrentDirO
back to it before you exit Only UnLockO locks that you created.

If you are crashing from both Workbench and CLI, and you are only crashing after exit, then you are
probably either freeing/closing something twice, or freeing/closing something your did not actually
allocate/open, or you may be leaving an outstanding device I/O request or other wakeup request.

You must AbortlOO and WaitlOO any outstanding I/O requests before you free things and exit
(see the autodocs for your device, and for Exec AbortlOO and WaitIO). Similar problems can be
caused by deleting a subtask that might be in a WaitTOFO. Only delete subtasks when you are
sure they are in a safe state such as Wait(0L).

300 CDTV Developers Reference Manual

3.72 Debugging CDTV Applications troubleshooting Your Software

Crashes—Subtasks and Interrupts

If part of your code runs on a different stack or the system stack, you must turn off compiler
stack-checking options. If part of your code is called directly by the system or by other tasks, you
must use long code/long data or use special compiler flags or options to assure that code.

Crashes—Window Related

Be careful not to CloseWindowO a window during a while(msg=GetMsg(...)) loop on that window’s
port (next GetMsgO would be on freed pointer). Also, use ModifyIDCMP(NULL) with care,
especially if using one port with multiple windows. Be sure to ClearMenuStripO any menus
before closing a window, and do not free items such as dynamically allocated gadgets and menus
while they are attached to a window. Do not reference an IntuiMessage’s IAddress field as a
structure pointer of any kind before determining it is a structure pointer (this depends on the Class
of the IntuiMessage). If a crash or problem only occurs when opening a window after extended
use of your program, check to make sure that your program is properly freeing up signals allocated
indirectly by CreatePortO, Open WindowO or ModifylDCMPQ.

Crashes—Workbench Only

If you are crashing near the first DOS call, either your stack is too small or your startup code did
not GetMsgO the WBStartup message from the process message port. If your program crashes
during execution or during your exit procedure only when started from WB and your startup opens
no stdio window or NIL: file handles for WB programs, make sure you are not writing anything to
stdout (printfO, etc.) when started from WB (argc==0). See also “Crashes—After Exit” above.

Crashes—Only on a 68000 and 68010

This can be caused by illegal instructions (80000000.00000004) such as new 68020/30/40 in¬
structions or inline 68881/882 code. Usually, though, it is caused by a word or longword access
at an odd address. This is legal on the 68020 and above, but will generate an Address Error
(80000000.00000003) on a 68000 or 68010. The most common causes are:

• Using uninitialized pointers.

• Using freed memory.

• Using system structures improperly (e.g., referencing into IntuiMessage->IAddress as a struct
Gadget * on a non-Gadget message).

Crashes—Only on a 68040

It is very difficult to recover from a bus error because of the instruction pipelining of the 68040.
If your program has an “Enforcer hit” (i.e., an illegal reference to memory), the resulting 68040
processor bus error will probably crash the machine. Use Enforcer (on an ’030) to track down your
problems, then correct them.

Programming and CDTV Multimedia 301

3.72 Debugging CDTV Applications Troubleshooting Your Software

Device-related Problems

Device-related problems may caused by:

• An improperly initialized port or I/O Request structures (use CreatePortO and CreateExtIO).

• Use of an I/O request that is not large enough (see the device’s include files and autodocs for
information on the required type of I/O request).

• Reuse of an I/O request before it has returned from the device (use the debugging tool 10-Torture
to catch this).

• Failure to abort and wait for an outstanding device request before exiting.

• Waiting on a signal/port/message allocated by a different task.

Disk Icon Won’t Go Away

This occurs when a program leaves a Lock on one or more of a disk’s files or directories. A memory
loss of exactly 24 bytes is usually a LockQ which has not been UnLocked.

DOS-related Problems

In general, any dos.library function which fills in a structure for you (for example, ExamineO),
requires that the structure be longword aligned. In most cases, the only way to insure longword
alignment in C is to dynamically allocate the structure. Unless documented otherwise, dos.library
functions may only be called from a process, not horn a task. Also note that a process’s pr_MsgPort
is intended for the exclusive use of dos.library. However, the port may be used to receive a
Workbench WBStartup message as long as the message is GetMsgO’d from the port before
dos.library is used.

Fails only on 68020/30

The following programming practices can be the cause of this problem:

• Using the upper byte of addresses as flags.

• Doing signed math on addresses; self-modifying code

• Using the MOVE SR assembler instruction (use Exec GetCCO instead)

• Software delay loops.

• Assumptions about the order in which asynchronous tasks will finish.

The following differences in 68020/30 can cause problems:

• Data and/or instruction caches must be flushed if data or code is changed by DMA or other
non-processor modification.

• Different exception stack frame.

302 CDTV Developers Reference Manual

3.72 Debugging CDTV Applications . Troubleshooting Your Software

• Interrupt autovectors may be moved by VBR.

• 68020/30 CLR instruction does a single write access unlike the 68000 CLR instruction which
does a separate read and write access (this might affect a read-triggered register in I/O space-
use MOVE instead).

Fails only on 68000

The following programming practices can be the cause of this problem:

• Software delay loops.

• Word or longword access of an odd address (illegal on the 68000). Note that this can occur under
2.0 if you reference IntuiMessage->IAddress as a structure pointer without first determining
that the IntuiMessage’s Class is defined as having a structure pointer in its IAddress.

• Use of the assembler CLR instruction on a hardware register which is triggered by any access.
The 68000 CLR instruction performs two accesses (read and write) while 68020/30 CLR does
a single write access. Use MOVE instead

• Assumptions about the order in which asynchronous tasks will finish;

• Use of compiler flags which have generated inline 68881/68882 math coprocessor instructions
or 68020/30 specific code.

Fails only on Older ROMs or Older WB

This can be caused by asking for a library version higher than you need Do not use the Udefine
LIBRARY-VERSION when compiling!.

It can also be caused by calling functions or using structures which do not exist in the older
version of the operating system. Ask for the lowest version which provides the functions you need
(usually 33), and exit gracefully and informatively if an OpenLibraryO fails (returns NULL). Or
code conditionally to only use new functions and structures if the available library’s lib->Version
supports them.

Fails only on Newer ROMs or Newer WB

This should not happen with proper programming. Possible causes include:

• Running too close to your stack limits or the memory limits of a base machine (newer versions
of the operating system may use slightly more stack space in system calls and usually use more
free memory).

• Using system functions improperly.

• Not testing function return values.

• Improper register or condition code handling in assembler code. Remember that result, if any,
is returned in DO, and condition codes and D1/A0/A1 are undefined after a system call

• Using improperly initialized pointers.

Programming and CDTV Multimedia 303

3.72 Debugging CDTV Applications troubleshooting Your Software

• Trashing memory.

• Assuming something (such as a flag) is B if it is not A.

• Failing to initialize formerly reserved structure fields to zero.

• Violating Amiga programming guidelines (for example, depending on or poking private system
structures, jumping into ROM or depending on undocumented or unsupported behaviors).

• Failure to read the function autodocs.

See the 2.0 Compatibility Problems Areas article for in-depth information on 2.0 compatibility
problem areas.

Fails only on Chip-RAM-Only Machines

This is caused by specifically asking for or requiring MEMF_FAST memory. If you don’t need
Chip RAM, ask for memory type 0L, or MEMF-CLEAR, or MEMF_PUBLICIMEMF_CLEAR as
applicable. If there is Fast memory available, you will be given Fast memory. If not, you will get
Chip RAM. May also be caused by trackdisk-level loading of code or data over important system
memory or structures which might reside in low Chip memory on a Chip-RAM-Only machine.

Fails only on machines with Fast RAM

Data and buffers which will be accessed directly by the custom chips must be in Chip RAM. This
includes bitplanes (use OpenScreenO or AJlocRasterO), audio samples, trackdisk buffers, and the
graphic image data for sprites, pointers, bobs, images, gadgets, etc. Use compiler or linker flags to
force Chip RAM loading of any initialized data needing to be in Chip RAM or dynamically allocate
Chip RAM and copy any initialization data there.

Fails only with Enhanced Chips

This is usually caused by writing or reading addresses past the end of older custom chips, or writing
something other than 0 (zero) to bits which are undefined in older chip registers, or failing to mask
out undefined bits when interpreting the value read from a chip register.

Note that system copper lists are different under 2.0 when ECS chips are present. See also “Fails
only on Chip-RAM-Only Machines”.

Fireworks

A dazzling pyrotechnic video display is caused by trashing or freeing a copper list which is in use,
or trashing the pointers to the copper list. If you aren’t messing with copper lists, see “Crashes and
Memory Corruption”.

304 CDTV Developers Reference Manual

3.72 Debugging CDTV Applications troubleshooting Your Software

Graphics—Corrupted Images

The bit data for graphic images such as sprites, pointers, bobs, and gadgets must be in Chip RAM.
Check your compiler manual for directives or flags which will place your graphic image data in
Chip RAM. Or dynamically allocate Chip RAM and copy them there.

Hang—One Program Only

Program hangs are generally caused by waiting on the wrong signal bits, on the wrong port, on the
wrong message, or on some other event that will never occur. This can occur if the event you are
waiting on is not coming, or if one task tries to WaitO, WaitPortO or WaitlOO on a signal, port, or
window that was created by a different task. Both WaitlOO and WaitPortO can call WaitO, and
you cannot WaitO on another task’s signals. Hangs can also be caused by verify deadlocks. Be sure
to turn off all Intuition VERIFY messages (such as MENUVERIFY) before calling AutoRequestO
or doing disk access.

Hang—Whole System

This is generally caused by a DisableO without a corresponding EnableO. It can also be caused by
memory corruption, especially corruption of low memory. See “Crashes and Memory Corruption”.

Memory Loss

First determine that your program is actually causing a memory loss. It is important to boot with
a standard Workbench because a number of third party items such as background utilities, shells,
and network handlers dynamically allocate and free pieces of memory. Open a shell for memory
checking, and a shell or Workbench drawer for starting your program. Arrange windows so that all
are accessible, and so that no window rearrangement will be needed to run your program.

In the shell, type Avail FLUSH<RET> several times (2.0 option). This will flush all non-open
disk-loaded fonts, devices, etc., from memory. Write down the amount of free memory. Now
without rearranging any windows, start your program and use all of your program features. Exit
your program, wait a few seconds, then type Avail FLUSH<RET> several times. Write down the
amount of free memory. If this matches die first value you wrote down, then your program is fine,
and is not causing a memory loss.

If memory was actually lost and your program can be run from CLI or Workbench, then try the
above procedure with both methods of starting your program. Note that under 2.0, there will
be a slight permanent (until reboot) memory usage of about 672 bytes when the audio device or
narrator.device is first opened. See “Memory Loss—CLI Only” and “Memory Loss—WB Only”
if appropriate.

If you lose memory from both WB and CLI, then check all of the open/alloc/get/create/lock type
calls in your code, and make sure that there is a matching close/free/delete/unlock type call for
each of them (note—there are a few system calls that have or require no corresponding free—check
the autodocs). Generally, the close/free/delete/unlock calls should be in opposite order of the
allocations.

Programming and CDTV Multimedia 305

3.72 Debugging CDTV Applications Troubleshooting Your Software

If you are losing a fixed small amount of memory, look for a structure of that size in the Structure
Offsets listing in the Amiga ROM Kernel Reference Manual: Includes and Autodocs. For example,
a loss of exactly 24 bytes is probably a LockO which has not been UnLockedO-

If you are using ScrollRasterO, be aware that ScrollRasterO left or right in a Superbitmap window
with no TmpRas will lose memory under 1.3 (workaround—attach a TmpRas). If you lose much
more memory when started from Workbench, make sure your program is not using Exit(n). This
would bypass startup code cleanups and prevent a Workbench-loaded program from being unloaded.
Use exit(n) instead.

Memory Loss—CLI Only

Make sure you are testing in a standard environment. Some third-party shells dynamically allocate
history buffers or cause other memory fluctuations. Also, if your program executes different code
when started from CLI, check that code and its cleanup. And check your startup.asm if you wrote
your own.

Memory Loss—Ctrl-C Exit Only

This result when you have Amiga-specific resources opened or allocated and you have not disabled
your compiler’s automatic Ctri-C handling (causing all of your program cleanups to be skipped).
Disable the compiler’s Ctri-C handling and handle Ctri-C (SIGBREAKF_Cl RL_C) yourself.

Memory Loss—During Execution

A continuing memory loss during execution can be caused by failure to keep up with voluminous
ID CMP messages such as MOUSEMOVE messages. Intuition cannot re-use ID CMP message
blocks until you ReplyMsgO them. If your window’s allotted message blocks are all in use, new
sets will be allocated and not freed till the window is closed. Continuing memory losses can also
be caused by a program loop containing an allocation-type call without a corresponding free.

Memory Loss—Workbench Only

Commonly, this is caused by a failure of your code to unload after you exit. Make sure that your code
is being linked with a standard correct startup module, and do not use the Exit(n) function to exit
your program. This function will bypass your startup code’s cleanup, including its ReplyMsgO of
the WBStartup message (which would signal Workbench to unload your program from memory).

You should exit via either exit(n) where n is a valid DOS error code such as RETURN-OK
(<dos/libraries.h>), or via final “} ” or return. Assembler programmers using startup code can JMP
to -exit with a long return value on stack, or use the RTS instruction.

306 CDTV Developers Reference Manual

3.72 Debugging CDTV Applications Troubleshooting Your Software

Menu Problems

A flickering menu is caused by leaving a pixel or more space between menu subitems when designing
your menu. Crashing after browsing a menu Cooking at menu without selecting any items) is caused
by not properly handling MENUNULL select messages. Multiple selection not working is caused
by not handling NextSelect properly. See the “Intuition Menus” chapter of the Amiga ROM Kernel
Reference Manual: Libraries and Devices.

Out-of-Sync Response to Input

This is caused by failing to handle all received signals or all possible messages after a WaitO or
WaitPortO call. More than one event or message may have caused your program to awakened.
Check the signals returned by WaitO/WaitPort() and act on every one that is set. At ports which
may have more than one message (for instance, a window’s IDCMP port), you must handle the
messages in a while(msg=GetMsg(...)) loop.

Performance Loss in Other Processes

This is often caused by a one program doing one or more of the following:

• Busy waiting or polling.

• Running at a higher priority

• Doing lengthy ForbidQs, DisableQs or interrupts.

Performance Loss—A3000

If your program has “Enforcer hits” (i.e., illegal references to memory caused by improperly
initialized pointers), this will cause Bus Errors. The A3000 bus error handler contains a built-in
delay to let the bus settle. If you have many enforcer hits, this could substantially slow down your
program.

Trackdisk Data not Transferred

Make sure your trackdisk buffers are in Chip RAM under 1.3 and lower versions of the operating
system.

Windows—Borders Flicker after Resize

Set the NOCAREREFESH flag. Even SMAKT_REFRESH windows may generate refresh events
if there is a sizing gadget If you don’t have specific code to handle this, you must set the
NOCAREREFRESH flag. If you do have refresh code, be sure to use the BeginO/EndRefreshO
calls. Failure to do one or the other will leave Intuition in an intermediate state and slow down
operation for all windows on the screen.

Programming and CDTV Multimedia 307

3.72 Debugging CDTV Applications Troubleshooting Your Software

Windows—Visual Problems

Many visual problems in windows can be caused by improper font specification or improper setting
of gadget flags. See the “2.0 Compatibility Problems Areas” article for in-depth information on on
common problems.

General Debugging Techniques

Narrow The Search

Use methodical testing procedures and debugging messages if necessary, to locate the problem area.
Low level code can be debugged using kprintfO serial (or dprintfQ parallel) messages. Check the
initial values, allocation, use, and freeing of all pointers and structures used in the problem area.
Check that all of your system and internal function calls pass correct, initialized arguments, and that
all possible error returns are checked for and handled.

Isolate the problem

If errors cannot be found, simplify your code to the smallest possible example that still functions.
Often you will find that this smallest example will not have the problem. If so, add back the other
features of your code until the problem reappears, then debug that section.

Use debugging tools

A variety of debugging tools are available to help locate faulty code. Some of these are source
level and other debuggers, crash interceptors, vital watchdog and memory invalidation tools like
Enforcer and MungWall.

A Final Word About Testing

Test your program with memory watchdog and invalidation tools on a wide variety of systems
and configurations. Programs with coding errors may appear to work properly on one or more
configurations, but may fail or cause fatal problems on another. Make sure that your code is tested
on both a 68000 and a 68020/30, on machines with and without Fast RAM, and on machines with
and without enhanced chips. Test all of your program functions on every machine.

Test all error and abort code. A program with missing error checks or unsafe cleanup might work
fine when all of the items it opens or allocates are available, but may fail fatally when an error or
problem is encountered. Try your code with missing files, filenames with spaces, incorrect filenames,
cancelled requesters, Ctri-C, missing libraries or devices, low memory, missing hardware, etc.

Test all of your text input functions with high-ASCII characters (such as the character produced by
pressing Alt-F then “A”). Note that RAWKEY codes can be different keyboard characters on national
keyboards (higher levels of keyboard input are automatically translated to the proper characters).

If your program will be distributed internationally, support and take advantage of the additional
screen lines available on a PAL system. Enhanced Agnus chip machines may be switched to be
PAL or NTSC via motherboard jumper J102 in A2000s and jumper J200 in A3000s. Note that a
base PAL machine will have less memory free due to the larger display size.

Write good code. Test it. Then make it great.

308 CDTV Developers Reference Manual

22.1 CDTV Title Issues :CDTV Title Guidelines

b) For very long searches that cannot be done in a short period of time, inform the user of the
progress of the search. Options include putting up a screen and start listing “hits” or showing
a gas gatige depictL tg the progress of a search. The user should be able to halt a long search
in progress, retaining the results found to that point

34. Multimedia elements should be comparable to video or cartoons viewed on TV. These dements
(animations, speech, music, sounds, video) should be streamed from disk so that they can be
more in-depth and longer in duration. The animations should normally be 3 dimensional and
change focus (i.e., background, perspective), not limited to a static background screen.

35. Educational titles and adventure type recreational products need to have a depth of interactivity
options. For instance, if a character is walking down a street, the user should be able to go
down alleyways, into buildings, etc. Each screen or in each section should have more than one
(and more than two!) things that can be done. These options should include non-linear choices,
i.e., being able to jump around. Linear choices are really no choices at all because you must
follow a prescribed path.

36. Educational titles should have some type of testing function to allow you to examine your
progress in a section. The Bookmark feature should be used if appropriate (e.g., game scores,
place in a book, tests, etc.).

37. Reference titles should allow numbers and spaces to be input for searches. All reference titles
should support searches on keywords in body or title, and not be just an alphabetized in/W Df
options (similar to the index of a book). They should also have the Bookmark feature using
Non-Volatile RAM (NVR) to save search criteria and possibly the resultant plMnpnts

38. Recreational titles should use continuous streamed animations and CD audio for background.
They should be able to save game states and high scores using NVR.

39. Possible suggestions:
a) Online help

b) Templates to fit on top of the IR controller to simplify the buttons for complex products
(e.g., flight simulator).

c) Optionally viewable demo commercials of other products.
d) Hardware add-ons (a la Nintendo).
e) Supply a formatted disk (or at least a disk label) if the product can use a floppy.

The User Interface 59

Appendix A Overview of CDTV And A500 Differences

Overview of
Differences

CDTV And A500

You can sum up the differences between CDTV and the A500 in two words: extra goodies. CDTV
has extras that the A500 does not, and it is those extras that make it more than just an A500 in a
sleek, black box. (Of course, it’s missing a few things like a keyboard and an internal floppy.)

The obvious difference is the CD drive with its ability to act as a CD-ROM drive, a CD-DA drive,
a CD+G drive and a CD+MIDI drive. Initially, the target audience is expected to use CDTV as a
CD-ROM device and a CD-DA/CD+G device. As the product evolves, more titles will come out
utilizing it as a CD+MIDI device and when the keyboard and floppy drive accessories come into
use, its power will really be seen.

Hardware Items

In addition to the CD drive, CDTV has extra front and rear ports, internal slots and Non-volatile
RAM (NVR).

Rear Ports

• MIDI IN and OUT

• Infrared Remote

Front Ports

• 256K Memory Card

• Headphone Jack

Internal Slots

• Intelligent video slot

• DMA internal slot

Non-volatile RAM

• 2K of Non-volatile RAM

Additional Rawkey Codes

The CD drive control buttons on the infrared remote are mapped to four additional rawkey codes.

Play/Pause
Stop
Fast Forward
Fast Reverse

6C
6D
6E
6F

Overview of CDTV And A500 Differences 1

Appendix B Disc Packaging Standards And Graphics Standards

Disc Packaging Standards And
Graphics Standards

Disc Packaging Standards And Graphics Standards 1

TM

r

DISC PACKAGING &
GRAPHICS STANDARDS

MANUAL

Ci Commodore

© Copyright 1990

Commodore Electronics Ltd.

All rights reserved.

Commodore, the Commodore logo, CDTV, and CDTV MULTIMEDIA

are trademarks of Commodore Electronics Ltd.

ONLY LICENSED ENTITIES ARE AUTHORIZED TO USE THE CDTV LOGO.

For licensing information, contact:

Gail Wellington
Commodore

1200 Wilson Drive

Westchester, PA 19380
(215)431-9204

TABLE OF CONTENTS

Introduction.
How to use this guidebook
Help....

What's in your package?.e

Categories & age groups.g

Section 1: CDTV MULTIMEDIA LOGO
Control space.1.2
Color..1.3
Unacceptable logo forms.1.4

Section 2: LONG BOX
Physical format.2.1

Materials.2.1
Inner construction.2.2
Graphic design..... 2.3

Section 3: WINDOW LONG BOX
Physical format.3.1
Materials.3.1
Inner construction.3.2
Graphic design.3.3

Section 4: DISC CADDY
CDTV MULTIMEDIA logo placement.4.1

Section 5: CADDY SLEEVE
Physical format & graphic design.5.1

Section 6: COVER INSERT
Physical format & materials.6.1

Graphic design.6.2

Section 7: INLAY CARD
Physical format & materials.7.1
Graphic design.7.2

Section 8: DISC GRAPHICS
Graphic design.8.1

Section 9: PROMOTIONAL MATERIALS
Graphic design.9.1

Section 10: REPRODUCTION PROOFS
CDTV MULTIMEDIA logo & Compact Disc logo...10.1
Category symbols.10.2

Glossary

Master Guides.Supplement
Long Box Master Guide...Provided with
Window Long Box Master Guide.Manual
Long Box Background Negative

Q
_

Q
_

o

INTRODUCTION

SPECIAL NOTE TO THIRD-PARTY PUBLISHERS:.

This publication was created to establish a universal standard for the
packaging and visual identity of CDTV discs.

Within these pages you will find clear and concise instructions that will guide
you in preparing CDTV disc packaging. Detailed diagrams and reproduceable
artwork are provided for every element of your package.

Commodore's goal is to create an image that will serve as an optimum
marketing environment, not only for CDTV technology, but for each and every title
for years to come. We feel we have succeeded in this endeavor.

Naturally, Commodore cannot exercise any authority over independent
publishers in the creation of their packaging, nor do we seek to imply any in the
publication of these standards.

However, all publishers of CDTV products share a responsibility to one another
to participate in presenting a unified image to the public, so that we may all reap
the benefits of a quality image.

In that spirit, we respectfully ask for your cooperation in conforming to these
standards.

Thank you for supporting CDTV
with your applications,

David Rosen
Director of International Marketing

Commodore International Ltd.

HOW TO USE THIS GUIDEBOOK

Creating CDTV Disc packaging will be quick and simple if you learn to
follow the instructions within these pages.

] Make sure you completely read the opening section of the book,
beginning with the Introduction. This is usually the first thing people skip in
any book, but in ours it provides an important basis for understanding the
guidebook. Also be sure to read Section 1: CDTV MULTIMEDIA Logo. It
gives you the information you need for using the CDTV MULTIMEDIA logo
which is the foundation of the entire design.

2 Determine the Category that your CDTV title falls within and the Age
Group of its target audience (see page g).

3 Determine the elements that will make up your packaqina
(see page e).

4 Refer to the Section of the book that describes each element you need
to create. (See the Table of Contents for help in locating each Section.)

5 Follow the diagrams and templates found both in each section of the
manual and the envelope (labelled "SUPPLEMENT") that accompanies the
manual.

£ Use the reproduction proofs provided in Section 10 in creating your
artwork.

THINGS TO KEEP IN MIND:

□ The diagrams shown throughout the book are NOT ALWAYS ACTUAL
SIZE. (The size limitations of this publication do not always allow full size
diagrams.) Measurements are provided with each diagram. If a diagram is
provided actual size, it will be accompanied by the label "ACTUAL SIZE".

O Reproduction artwork is provided in the last section of the book.

HELP!...

If you have any questions, or seek further guidance in preparing your
packaging, please feel free to contact the creators of the guidebook:

Communique

30 Galesi Drive

Wayne, New Jersey 07470

(201) 785-9115

WHAT'S IN YOUR PACKAGE?

Your CDTV Disc package can consist of a combination of several different
elements, (i.e.: long box, jewel case insert, etc.) . What goes into your
package will be determined by several factors, including the nature of the

title, your production budget and your aesthetic preferences. Since the packaging
elements are interdependent, you should determine the make-up of your package
before any production is begun.

DECISIONS, DECISIONS...

Some of the decisions that you'll face in packaging a CDTV title are:

O Will the outer packaging be a standard Long Box or a Window Long Box?

The Window Long Box provides an economical outer package. A
window is left open for the Jewel Case or Disc Caddy to show through,
which then becomes your title graphics. The outer box can then be
printed simply in 2-color.

The standard Long Box will give you more space to employ your title
graphics, but will most likely need to be printed in 4-color process, a
more expensive method.

▲ COMMODORE RECOMMENDS: Window Long Box.
Not only is it economical but it will help provide a unified image for
CDTV titles and set them apart from conventional CD and CD+G
packaging.

O Will the disc itself be packaged inside a Jewel Case or a Disc Caddy?

CDTV owners will require Disc Caddies to play CDTV titles. However,
inclusion of them with each disc will add to the cost.

▲ COMMODORE RECOMMENDS: Disc Caddy.
The additional value will be appreciated by customers and will
translate into a increased perception of you and your products.

O Will there be any additional documentation, reference cards, or other
items included in the box?

If so, be sure to prepare your outer box with the proper construction to
provide enough room.

continued

CDTV Disc Packaging & Graphics Standards Manual e

WHAT'S IN YOUR PACKAGE?
continued

Below is a simple flow chart that outlines your packaging alternatives.

Element

Function Section

Outer Long Box -:-
Packaging Section 2

Window Long Box -
Section 3

Comments:
1. Long boxes ore commonly used in the U.S. and other markets, but
not in Europe. If your application is to be marketed in both the U.S.
& Europe, you should prepare the disc enclosure so that it can both
"stand alone" and be packaged in a window long box.

2. Window boxes are most useful when there are both front and
back windows. However, front-window-only boxes are also used. If
you are considering this option, bear in mind that less information is
then available to the customer at retail.

3. Window die cuts are positioned slightly different for Disc Caddies
than for Jewel Cases. The Master Guiae template includes the
correct dimensions for each.

Comments:
1. ONLY the disc itself may be enclosed inside of a disc caddy. Do
NOT insert documentation of any kind inside the disc caddy. r-

Caddy Sleeve-
Section 5

Inlay Card-
Section 7 ^

Cover Insert -
Section 6

Comments:
1. A cover insert in the form of a booklet may also accompany a
disc caddy within the caddy sleeve. This is your option. If you feel
that an accompanying booklet is important to your application, it
can be included with either form of disc enclosure.

Disc Disc Graphics
Section 8 o

CATEGORIES & AGE GROUPS

CDTV applications will span a broad spectrum of interests and audiences.
Because of this diversity, and to help introduce consumers to the world of
CDTV, Commodore has devised a system of seven categories to help

explain each title and identify its likely audience.

Choosing a specific category for your title may seem difficult and limiting at
times. By nature, many CDTV applications cross common borders of
specialization. However, we strongly urge that you choose ONE AND ONLY
ONE category and ONE age group that best applies to your title.
Remember, this is only a supplemental aid for customers. Your title graphics and
description will tell the real story, so we suggest that you exercise that opportunity
to present the features and benefits of your application.

The categories are as follows:

Category Description

Arts & Leisure Non-game activities for spare time including hobbies, how-to, etc.
Examples: Gardening, home repair, video tilling, performing nnrl visual nrt<

references

Education Learn-fo or practice basic education skills. Also academic tools.
Examples: Learn-to-read. simulations of physics experiments foreign Inngnnge tutors

Entertainment Games of all types (action, thinking, board game simulations, etc.)
Examples: Flight simulators. arcade & adventure games chess

Music All types of music-oriented titles, including participatory & reference.
Examples: Learn to plav recorder, classical music reference works piny along MIDI

CDTV-specific CD+G

Periodicals Reference or other works released on a regular schedule.
Examples: Cataloas. maaazines. directories

Productivity Traditional computer applications.
Examples: Word processors, spreadsheets, databases, home accounting

Reference Sources of information intended to be looked up or explored.
Examples: Dictionaries, encyclopedias. atlases "mffeeJahle hnnlts"

AGE IDENTIFICATION

The age of your target audience should be described in one of the following
manners. Again, please choose only one description.

For Children Ages_to_
For Teens & Adults
For All Ages
For Adults

CDTV MULTIMEDIA LOGO

T'he CDTV MULTIMEDIA logo, based on the original CDTV logo, is the
foundation for this entire identity program. Like these guidelines, it is the result
of a long, intense creative process to develop a trademark that will project a

unique, positive identity for these products.

In the use of the CDTV MULTIMEDIA logo, we ask that you maintain strict
adherence to the instructions in this chapter.

LOGO

The CDTV logo consists of the CDTV logotype, the disc graphic, the type
"MULTIMEDIA"and the "TM" symbol. These elements are NEVER to be
separated, used independently of each other, or in any way altered
from the form shown below, except as specified in this publication.

THE LOGO IS NEVER TO BE REDRAWN OR RE-CREATED. IT MUST
ALWAYS BE REPRODUCED PHOTOMECHANICALLY FROM THE
REPRODUCTION PROOFS IN THIS MANUAL (see Section 10 for
reproduction proofs.)

DO NOT REPRODUCE FROM THIS PAGE
(see Section 10 for reproduction proofs.)

CDTV MULTIMEDIA LOGO
continued

CONTROL SPACE

The logo has a minimum requirement of free space around it, with no other
graphic elements intruding. This is called the "control space".

The control space is equal to the width of the uprights of the
letter "C" in CDTV. In the diagram below it is labelled "X".

DO NOT REPRODUCE FROM THIS PAGE
(see Section 10 for reproduction proofs.)

CDTV MULTIMEDIA LOGO
continued

COLOR

The logo must always appear...

1. In either black ink, or as a white reverse image

ACCEPTABLE:

DO NOT REPRODUCE FROM THIS PAGE
(see Section 10 for reproduction proofs.)

CDTV MULTIMEDIA LOGO
continued

UNACCEPTABLE LOGO FORMS

NEVER omit or separate any of NEVER alter the letter spacing
the elements. of the typography.

NEVER alter the typestyle or placement of the typography.

NEVER stack the typography or
alter its arrangement.

NEVER place the logo in a box,
frame or other graphic.

3

NEVER place the logo vertically. NEVER intermix shades or colors.

Section 2: LONG BOX

The long box is the outer packaging used for CD's in many major markets,
including the U.S. It has been similarly adopted as a outer packaging for
CDTV discs in those same markets.

PHYSICAL FORMAT

The long box, when fully constructed, measures approximately 12.3" tall, by
5.7" wide, by .5" deep. Along with this manual, you should have received a film
template labelled CDTV LONG BOX: MASTER GUIDE. (The film is too large for
inclusion in this book.)

The Master Guide gives you all the dimensions, diagrams and instructions you
will need in creating your long box.

MATERIALS

Commodore recommends and encourages the use of recycled paper in the
making of long boxes for CDTV discs. Serious environmental concerns have
caused intense criticism of long boxes in CD marketing. However, their function as
both a theft deterrent and a marketing tool have kept them in use.

We feel that the only environmentally responsible solution to the problem is to
use recycled paper in our long boxes.

We further encourage that, when it applies, you include an appropriate
statement to that effect on the back of your box.

EXAMPLE: Made from recycled paper.

OR, if applicable

Made from 100% recycled paper.

LONG BOX
continued

INNER CONSTRUCTION

Each long box must be specially die cut to provide for the proper inner
construction which provides both support and strength for the box itself and will
hold the contents in place.

This is of particular importance when additional materials, other than the disc
enclosure, is included, such as reference guides, "smart cards", etc.

LONG BOX
continued

GRAPHIC DESIGN

With this manual you received a Long Box MASTER GUIDE, which is a large,
acetate template. This template shows an actual-size diagram of an unconstructed
window long box and complete instructions for creating your artwork.

Below is a depiction of the final result of those instructions. There are areas
provided within the design for you to place your own graphics depicting the
application title, features, etc., and your company's logo and information. You
may "block off' these areas and use the entire space, or simply place your
graphics over our background within the areas, in "silhouette" fashion.

FRONT

For all instructions regarding the graphic design of the window long box,
refer to the film template labelled CDTV LONG BOX: MASTER GUIDE provided
with this manual.

Section 3: WINDOW LONG BOX

The window long box is a modification of the standard CD long box which
provides a die-cut opening, or window, in the front & back panels of the box.
Through these openings the disc enclosure itself is visible which eliminates the

need to re-create it on the exterior of the long box. This is also a useful technique
when the same application is to be offered in markets where long boxes are not
used. This way, the same disc enclosure can be used in multiple markets (barring
language barriers).

Window boxes can also have only one die-cut window in the front, but this, of
course, does not permit the back of the disc enclosure to show through.

PHYSICAL FORMAT

The window long box shares the same dimensions as a standard long box,
measuring approximately 12.3" tall, by 5.7" wide, by .5" deep. The die-cut
window is positioned in the upper half of the box and measures approximately
4.9" x 4.4"

Along with this manual, you received a film template labelled CDTV
WINDOW LONG BOX: MASTER GUIDE. (The film is too large for inclusion in this
book.)

The Master Guide will give you all the dimensions, diagrams and instructions
you will need in creating your long box.

MATERIALS

Commodore recommends and encourages the use of recycled paper in the
making of long boxes for CDTV discs. Serious environmental concerns have
caused intense criticism of long boxes in CD marketing. However, their function as
both a theft deterrent and a marketing tool have kept them in use.

We feel that the only environmentally responsible solution to the problem is to
use recycled paper in our long boxes.

We further encourage that, when it applies, you include an appropriate
statement to that effect on the back of your box.

EXAMPLE: Made from recycled paper.

OR, if applicable

Made from 100% recycled paper.

CDTV Disc Packaging & Graphics Standards Manual 3.1

WINDOW LONG BOX
continued

INNER CONSTRUCTION

Each long box must be specially die cut to provide for the proper inner
construction which provides both support and strength for the box itself and holds
the contents in place.

The positioning of the disc package within the window long box must be
precise, so that the the correct view of the package is provided.

On the Master Guide, a graphic indicates the correct positioning of the disc
package within the window long box.

Should you choose to include additional materials, such as reference guides,
"smart cards", etc., you need to provide a proper inner structure to the long box so
that they are held in place.

Disc enclosure

FRONT BACK
(optional)

WINDOW LONG BOX
continued

GRAPHIC DESIGN

With this manual you received a Window Long Box MASTER GUIDE, which is
a large, acetate template. This template shows an actual-size diagram of an
unconstructed window long box and complete instructions for creating your
artwork.

Below is a depiction of the final result of those instructions. There areas
provided on the side and back panels for you to place your own graphics
depicting the application title and your company's logo and information.

FRONT

For all instructions regarding the graphic design of the window long box,
refer to the film template labelled CDTV WINDOW LONG BOX: MASTER
GUIDE provided with this manual.

Section 4: DISC CADDY

When a disc caddy is included in your package, it is recommended that a
CDTV MULTIMEDIA logo be imprinted on the disc-shaped plate found in
the center of the lid.

Use the following diagram for size and placement only. DO NOT
REPRODUCE FROM THIS DIAGRAM. For reproduction proofs, see Section 10.

CDTV LOGO PLACEMENT

ACTUAL SIZE

Disc Caddy Inserts This Way

DO NOT REPRODUCE FROM THIS DIAGRAM
For reproduction proofs, see Section 10

Section 5: CADDY SLEEVE

‘^^his chapter will help you prepare the sleeve that encloses a disc caddy.

It is important to bear in mind that the caddy sleeve serves two vital functions:

1. After purchase, the caddy sleeve becomes the primary
graphic associated with the disc by the consumer.

2. When used inside a window long box, the caddy sleeve
becomes the primary retail display graphics.

For these reasons and others, it is important that the caddy sleeve be prepared
properly.

On the following page, you will find a diagram of the dimensions and layout
of your caddy sleeve. The diagram is provided exactly to size. Logos, graphics
and type are provided for size & position only. DO NOT REPRODUCE THEM
FROM THIS. DIAGRAM. For reproduction proofs, refer to Section 10.

s s

D
O

 N
O

T
 R

E
P

R
O

D
U

C
E
 F

R
O

M
 T

H
IS

 D
IA

G
R

A
M

Fo

r
re

p
ro

d
u

ct
io

n
 p

ro
of

s,
 s

ee
 S

ec
ti

on
 9

.

CADDY SLEEVE
continued

Your design should consist of the following elements (The letters correspond to the diagram
on the preceding page. Follow these letters for detailed instructions for each element of the
design):

TOP BARS: A band of 100% black, .5" tall along the top edge of the front and back covers.
The top panel should also print 100% black.

CDTV MULTIMEDIA LOGO: Centered within both top bars in REVERSE form. Follow
examples for size & position. (See Section 10 for reproduction proofs,)

TYPOGRAPHY:

CATEGORY: Your title category set in 12 pt. Helvetica Regular, upper & lower
case. Reverse white* from color bar. Place as shown. (See page g to find which
category applies to your title.)

AGE GROUP: Set in 10 pt. Helvetica Regular, upper & lower case. Reverse
white* from color bar. Place as shown. (See page g for correct age group phrasing.)

CDTV: The letters CDTV set in 10 pt. Helvetica Regular, all caps. Reverse white*
from top panels & color bars; surprint 100% black on bottom panel.

FOR PUBLISHER USE: The areas within these dashed borders are free for you to use for title
graphics and publisher information.

13 COLOR BARS: .5" bands of color at bottom edge of front and back panels identifying the
title category.

Category Pantone Ink Process Equivalent

Arts & Leisure PMS 299 20%M, 100%C
Education PMS 108 100%Y
Entertainment PMS 032 100% Y, 100%M
Music PMS 265 70%M, 60%C
Periodicals PMS 354 100%Y, 100%C
Productivity PMS 021 90%Y, 60%M
Reference PMS 160 100%Y, 60%M, 40%K

CATEGORY SYMBOL: (See Section 10 for reproduction proofs.)

Symbol reverses white* from color bars.

‘NOTE: (EXCEPT for Education category, which surprints 100% black).

Section 6: COVER INSERT

Should you choose to enclose your disc in a jewel case, this chapter will help
you prepare the insert that will be placed inside the jewel case's transparent
cover.

PHYSICAL FORMAT

The cover insert may take the form of a single sheet of paper or a multi-page
booklet that contains instructional or supplemental information.

However, for the purpose of these standards, we are concerned only with the
visible portion of the insert as it appears in the jewel case, or as we refer to it, the
COVER INSERT. If your insert is a multi-page booklet, then the COVER is the only
portion to which these instructions apply.

It is important to bear in mind that the cover insert serves two vital functions:

1. The cover insert/ when in place, becomes the cover of the
jewel case and, as a result, the primary graphic associated
with the disc by the consumer.

2. When used inside a window long box, the cover insert
becomes the primary retail display graphics.

For these reasons and others, it is important that the cover insert be prepared
properly.

On the following page, you will find a diagram of the dimensions and layout
of your booklet cover. The diagram is provided exactly to size. Logos, graphics
and type are provided for size & position only. DO NOT REPRODUCE THEM
FROM THIS DIAGRAM. For reproduction proofs, refer to Section 10.

MATERIALS

Before you choose the paper stock on which you print your cover insert, check
with your disc duplicator or fulfillment house for their specifications or
requirements. The wrong choice could result in jamming or damage during the
insertion process.

COVER INSERT
continued

PHYSICAL FORMAT & GRAPHIC DESIGN

For detailed instructions, refer to the corresponding letters on the following

page.

ACTUAL SIZE

(12.07 cm)

DO NOT REPRODUCE FROM THIS DIAGRAM
For reproduction proofs, see Section 10

CDTV Disc Packaging & Graphics Standards Manual
6.2

COVER INSERT
continued

Your design should consist of the following elements (The letters correspond to the diagram
on the preceding page. Follow these letters for detailed instructions for each element of the
design):

TOP BAR; A band of 100% black, .5" tall, bleeds off the top and right edges of your cover
insert. (Bleeds three sides if single sheet insert.)

CDTV MULTIMEDIA LOGO: Centered within the top bar in REVERSE form. Follow example
for size & position. (See Section 10 for reproduction proofs.)

TYPOGRAPHY:

CATEGORY: Your title category set in 12 pt. Helvetica Regular, upper & lower
case. Reverse white* from color bar. Place as shown. (See page g to find which
category applies to your title.)

AGE GROUP: Set in 10 pt. Helvetica Regular, upper & lower case. Reverse
white* from color bar. Place as shown. (See page g for correct age group phrasing.)

Q PUBLISHER USE: The areas within these dashed borders are free for you to use for title
graphics and publisher information.

COLOR BAR:

.5" band of color that identifies the title category. Bleeds off the bottom and right edges of
your cover insert. (Bleeds three sides if single sheet insert.)

Category Pantone Ink Process Equivalent

Arts & Leisure PMS 299 20%M, 100%C
Education PMS 108 100%Y
Entertainment PMS 032 100%Y, 100%M
Music PMS 265 70%M, 60%C
Periodicals PMS 354 100%Y, 100%C
Productivity PMS 021 90%Y, 60%M
Reference PMS 160 100%Y, 60%M, 40%K

CATEGORY SYMBOL: (See Section 10 for reproduction proofs.)

Symbol reverses white* from color bar.

*NOTE: (EXCEPT for Education category, which surprints 100% black).

CDTV Disc Packaging & Grophics Standards Manual 6.3

Section 7: INLAY CARD

When your disc is packaged inside a jewel case, you will need to
prepare an "inlay card", which is formed into the case itself, becoming
the graphics for the back and side panels.

PHSYCIAL FORMAT

The inlay card is simply a flat sheet of paper that is folded approx. 1/4" from
both the left and right edges. This results in one large panel flanked by two narrow
panels. When encased inside the jewel case, the large panel becomes the back
cover and the narrow panels become the side panels, or "spines".

It is important to bear in mind that the inlay card serves two vital functions:

1. The inlay card becomes the back cover and both side panels
of the jewel case, and as a result, is viewed prominently by
the consumer.

2. When used inside a window long box, the inlay card
becomes visible at retail.

For these reasons and others, it is important that the inlay card be prepared
precisely.

On the following page, you will find a diagram of the dimensions and layout
of your inlay card. The diagram is provided exactly to size. Logos, graphics and
type are provided for size & position only. DO NOT REPRODUCE THEM FROM
THIS DIAGRAM. For reproduction proofs, refer to Section 10.

MATERIALS

Before you choose the paper stock on which you print your inlay card, check
with your disc duplicator or fulfillment house for their specifications or
requirements. The wrong choice could result in jamming or damage during the
insertion process.

INLAY CARD
continued

PHYSICAL FORMAT & GRAPHIC DESIGN

For detailed instructions, refer to the corresponding letters on the following

page.

ACTUAL SIZE

DO NOT REPRODUCE FROM THIS DIAGRAM
For reproduction proofs, see Section 10

CDTV Disc Packaging & Graphics Standards Manual
7.2

0
0

(0
1

INLAY CARD
continued

Your design should consist of the following elements (The letters correspond to the diagram
on the preceding page. Follow these letters for detailed instructions for each element of the
design):

TOP BAR: A band of 100% black, .5" tall bleeds off the top and both sides of the inlay card.

CDTV MULTIMEDIA LOGO: Centered within the top bar in REVERSE form. Follow example
for size & position. (See Section 10 for reproduction proofs.)

TYPOGRAPHY:

CDTV: The letters CDTV set in 10 pt. Helvetica Regular, all caps. Reverse white*
from both side panels. Place as shown.

»■ FOR PUBLISHER USE: The areas within these dashed borders are free for you to use for title
graphics and publisher information.

COLOR BAR:

.5" band of color on both side panels identifying the category. Bleeds off the bottom and
outside edge of the inlay card.

Category Pantone Ink Process Equivalent

Arts & Leisure PMS 299 20 %M, 100%C
Education PMS 108 100%Y
Entertainment PMS 032 100% Y, 100%M
Music PMS 265 70%M, 60%C
Periodicals PMS 354 100%Y, 100%C
Productivity PMS 021 90%Y, 60%M
Reference PMS 160 100%Y, 60%M, 40%K

CATEGORY SYMBOL: (See Section 10 for reproduction proofs.)

Symbol reverses white* from color bar on both side panels.

*NOTE: (EXCEPT for Education category, which surprints 100% black).

Section 8: DISC GRAPHICS

This section will demonstrate the proper application of graphics on the face of
the disc itself. Our only specifications are the consistent application of the
CDTV MULTIMEDIA logo, and the use of the Compact Disc Logo, which is a

requirement of international data standards.

GRAPHIC DESIGN

Below is a diagram of the disc and its design. The diagram is provided exactly
to size. The graphic on the disc are provided for size & position only. DO NOT
REPRODUCE FROM THIS DIAGRAM. For reproduction proofs, refer to
Section 10.

CDTV MULTIMEDIA LOGO: Printed in positive form, positioned squarely at "9
o'clock " on the disc, square to all other graphics. (See Section 10 for
reproduction proofs.)

COMPACT DISC LOGO: Printed in positive form, positioned squarely at "3
o'clock " on the disc, square to all other graphics. (See Section 10 for
reproduction proofs.)

CDTV Disc Packaging & Graphics Standards Manual 8.1

Section 9: PROMOTIONAL MATERIALS

In this section, you will find recommendations for the use of the CDTV
MULTIMEDIA logo on promotional materials such as sell sheets or, as they are
also known, "slicks".

We have depicted below a recommended graphic for the head of an 8-1/2 x
11" sheet. As we all know, promotional materials can assume a limitless number
of sizes and formats. However, we ask that you adapt this guideline to your
format, scaling its dimensions proportionately.

NOT ACTUAL SIZE

Q| TOP BAR: A band of 100% black, 1" tall bleeds off the top and both sides of
the sheet.

[Jj CDTV MULTIMEDIA LOGO: Centered within the top bar in REVERSE form.
Follow example for size & position. (See Section 10 for reproduction proofs.)

Section 10: REPRODUCTION PROOFS

In this section, you will find reproduceable artwork, or "stats" of the graphics you
will need to follow the directions in this manual.

ALWAYS USE PHOTOMECHANICAL REPRODUCTIONS OF THE
REPRODUCTION PROOFS.

NEVER...

• Use photocopies in your artwork.

• Attempt to re-create the artwork yourself.

• Reproduce art from the diagrams or templates.

FOR COMPUTER GRAPHICS USERS:

Digitized versions of all of the following logos and symbols are available for
those who employ computerized systems to create their artwork.

For further information, contact:

Communique
30 Galesi Drive
Wayne, New Jersey 07470
(201)785-9115
Art Directors: Jeff Jackson & Bob Debiak

r

CDTV Disc Packaging & Graphics Standards Manual

CATEGORY SYMBOLS: Reproduction Proofs

For use on...
Long Box/
Window Long Box

Cover Inserf/
Caddy Sleeve
(Side Panel)

Caddy Sleeve
(Front/Back Panels) Inlay Card

Arts & Leisure

Periodicals

i

0 P
p

s
Productivity

m #, % %

el y

% %

Reference

&

lift si
si si

M iM

9

Bleed

Booklet

Disc Caddy

Caddy Sleeve

Category

Control space

Inlay Card

Jewel Case

Live area

Logo

Long Box

Publisher

Pantone/PMS

Process

Reproduction proofs

Window Long Box

GLOSSARY

Extending graphics beyond the edge as a safety margin.

Pamphlet that accompanies discs. It can be inserted into
the clear cover of a jewel case, thus becoming the cover
of the case itself.

Cartridge into which discs must be placed before
insertion into CDTV player. It provides the stability
necessary for correct data transfer from the disc.

Paperboard box or wrapping that encloses a disc caddy.

CDTV titles of a similar topic or focus.

A margin of empty space provided around a logo or
graphic to ensure that no other elements "crowd" it.

Printed sheet that becomes encased inside the back wall
of a jewel box, thus visibly becoming the back and side
panels of the case itself.

Standard plastic container for compact discs with hinged,
transparent lid.

Safe area in which graphics can be applied.

The official symbol of CDTV products.

Outer package used conventionally for compact discs,
measuring approx. 12.3" tall, 5.7" wide, .5" deep when
constructed.

Any organization that creates and markets CDTV titles.

Universally accepted standard for color matching in the
printing industries that uses a numbered assortment of
colors.

The printing method of simulating vast ranges of color by
using combined patterns of minute dots of 4 standard
color inks - yellow, magenta, cyan & black (known as the
process colors).

Artwork that is provided in a clean, perfect form in order
to ensure optimum quality in reproduction.

Modification of standard long box with die cut opening
on the front and back panels allowing a view of the disc
package inside.

Appendix C Modificationfor Switchable PALJNTSC CDTV

Modification for Switchable PAL/NTSC
CDTV

Background

CDTV units are capable of generating both PAL and NTSC video formats. Older CDTV units
were configured with jumpers at the factory for one or the other format. The jumpers were used
instead of a switch to insure FCC compliance. Certain developers or demonstrations may require
that their older CDTV unit be easily switchable between formats to test or run applications designed
for different world markets. For these units, it is possible to replace the jumpers with a switch so
that the CDTV unit can be easily changed from one video format to the other.

Tools & Materials

To make this modification you will need the following tools:

1. Soldering iron with fine tip

2. Desoldering device (solder wick, etc.)

3. X-acto knife

4. Wire strippers

5. Needlenose pliers or tweezers

The following materials will be required:

1. Small 3PDT or 4PDT switch

2. Wire-wrap wire

Familiarization

Remove the top cover (6 screws) and locate oscillators XI and XS on the left side of the board.
These are used for NTSC and PAL signal generation respectively. Jumpers JP8-11 select between
PAL and NTSC formats. The jumper configuration and functions are listed in the following table:

Format
Jumoer NTSC PAL Description

JP8AB Open Shorted PAL crystal output
JP8CD Shorted Open NTSC crystal output
JP9 Shorted Open +5V for NTSC crystal
JP10 Open Shorted +5V for PAL crystal
JP11 Shorted Open Frequency divider select

The NTSC/PAL switch should be located to the left of, and centered between, XI and X5. If
needed, the metal shield to the left of XI and X5 may be cut to accommodate the switch. The wires,
particularly the ones attached to JP8, should be kept as short as possible.

Related Amiga Articles 1

Appendix C Modification for Switchable PAUNTSC CDTV

Instructions

1. Remove any soldered connections between the pads of JP8-11. Some units were pie-configured
to NTSC by connecting in etch the pads of JP8CD, JP9, and JP11. If these pads are connected,
cut the traces connecting the pads using the X-acto knife.

2. Make the following connections using the wire-wrap wire. Note that the individual (SW)itch
elements are listed as A, B, C, and D and the switch terminals are listed as (Qommon, (l)st
position and (2)nd position. Also note that the individual pads of JP8-11 are referenced on the
included schematics and silkscreen drawings.

1 - SWA pin C to JP9 pad A 6_ SWC pin C to JP8 pad B or D
2 _ SWA pin 1 to JP9pad B 7_ SWC pin 1 to JP8 pad C
3 _ SWA pin 2 to JP10 pad B 8_ SWC pin 2 to JP8 pad A

4 _ SWB pin C to JP11 pad B *SWD not used
5 _ SWB pin 1 to JP11 pad A

3. Attach the switch to the circuit board with some type of non-conductive adhesive (a hot melt
glue gun works well for this).

Testing and Operation

1. Position 1 of the PAIVNTSC switch selects NTSC format, position 2 selects PAL format The
format must be selected before turning on the main power switch of the CDTV unit.

2. To test the switch operation, connect a multisync monitor to the CDTV unit. Select NTSC
format and turn on the main power. The CDTV power up logo should fill the entire screen of
the monitor.

3. Turn off the CDTV, select PAL format, and turn the power on again. The logo should be smaller
than the one displayed in NTSC format.

4. After verifying the correct operation of the PAL/NTSC switch, turn off the power and replace
the cover.

2 CDTV Developers Reference Manual

Appendix C International Keyboard Input

International Keyboard Input
The Amiga computers are sold internationally with a variety of local keyboards which match the
standards of particular countries.

The V2.0 KeyShow (or VI .3 KeyToy) command shows you a graphical representation of the
keyboard for the currently installed keymap. If you would like to see any of these national
keyboard layouts, you can use the SetMap command in a shell to set that shell to any keymap
from devs/keymaps, and then ceUKeyShow in that same shell to see a display of the keyboard that

corresponds to the keymap.

If you look at several, you will see that some letters and special symbols are in different physical
positions on the various keyboards. For instance, on the German and Italian keyboards, the Y
and Z keys are swapped when compared to the USA keyboard. Since the physical position of a
key determines the raw key code that it generates, straight RAWKEY input is not internationally
compatible. Pressing the second key on the fifth row will generate the same raw key code on all
Amiga keyboards, but will be decoded as a Z on a US keyboard and as a Y on a German.

Since VI.2, the Amiga console.device supports national keyboards by providing mapping of raw
key codes to the proper ASCII characters and strings as specified in a Keymap. In addition, the
console.device provides handling of the “dead keys" used to generate accented characters. Any
keyboard input processed by the console.device will be automatically translated to the installed
keymap.

All of the national Keymaps, including usa, contain dead keys. Basically, a dead key is a key that
produces no output until a second key is pressed. Thus the dead key modifies the output of another
key. Often, a dead key is used to indicate that a particular accent mark is to be placed on the next
character typed. The ASCII values for these characters are all greater than 127. They are listed in
the International Character Codes table in the AmigaDOS manual. If a dead key is used to request
an invalid accent for a character, the normal unaccented character results.

On the USA keyboard, the F, G, H, J, and K keys are defined as dead keys. Pressing Alt and one of
these keys is a request for an accent to be placed on the next character you type.

For example, type these in a shell or editor with the default usa keymap:

ALT-F then A results in an A accented with ’ A
ALT-H then E results in an E accented with A £
ALT-J then C results in a plain C (invalid accent for Q

KeyShow Shows Alt Accents. If you press the Alt key while using KeyShow, the
keycaps of the dead keys (for example, the F, G, H, J and K keys with the usa Keymap)
will display the accents generated by those keys.

Since VI.2, the console.device, IDCMP VANILLAKEY, and AmigaDOS CON: and RAW: all
provide automatic handling of dead keys and translation of raw keycodes to ASCII based on the
current keymap. If your software requires non-VANILLA keys such as the cursor and function
keys, using console.device keyboard input in your Intuition window will allow you to receive the
escape sequences generated by these keys. If you are using IDCMP RAWKEY input in international
software, you must use the console.device's RawKeyConvertO function properly to get keymap

Related Amiga Articles 3

Appendix C International Keyboard Input

translation and dead key handling. Use NULL for the keyMap argument to get translation to the
currently installed Keymap.

Do The Proper Setup. You must OpenDeviceO the console.device and set up a
ConsoleDevice base variable from io_Device before using RawKeyConvertO- For an ex¬
ample, see the DeadKeyConvertO routine in the “Intuition” chapter example MouseKeys.c
of the VI.3 Amiga ROM Kernel Reference Manual: Libraries and Devices. Also note
that in V2.0, you can ask for RAWKEYIVANILLAKEY together to get keymap translated
ASCn VANILLAKEY messages for the alphanumeric keys and raw RAWKEY values for
the special keys (function keys, help key, etc.).

Be sure to test your code with ASCII characters greater than 127 such as accented characters (e.g.,
Alt-F A) wherever your code accepts keyboard input to ensure that your logic and data structures
work properly with high ASCII values.

Make sure that your case-insensitive string compare is internationally compatible and properly
handles the equality of shift and unshifted accented characters. The V2.0 utility.library provides
two internationally compatible string compare functions, StricmpO and StmicmpO.

Test your code after using SetMap to install various keymaps, and try out all of your text entry,
filename entry, and other keyboard features with strings containing accented characters wherever
applicable. Use KeyShow/KeyToy as a guide for what the keycaps show in each country and make
sure your program is receiving the proper characters for that keymap. You won’t be able to test all
of the keys of some national keyboards, but you can test enough keys to be certain your program is
getting proper ASCII translation.

4 CDTV Developers Reference Manual

Appendix C Finding the Aspect Ratio

Finding the Aspect Ratio
The pixel aspect ratio describes the ratio of the width (xAspect) to height (yAspect) of the pixels
in a Screen or ViewPort. In order to create a truly What-You-See-Is-What-You-Get (WYSIWYG)
graphics display on the Amiga, you need to find the pixel aspect ratio of the display mode you are
using With the proper aspect ratio, an application can correctly display and store ILBM files, can
rotate objects properly, and can calculate the proper dimensions to draw true circles and squares so
they appear the same on the Amiga display as they would on some other output device like a laser
printer.

Under VI.3 and the original Amiga chip set, relatively few display modes were available. Under
V2.0 versions of the OS, applications can use hard-coded values for the X/Y pixel aspect ratio. The
aspect ratios for the display modes available to the 1.3 system are (xAspect / yAspect):

NTSC Lores 44/52
PAL Lores 44/44

Halve the xAspect for Hires modes. Halve the yAspect for Interlaced modes.

These aspect values are more accurate than the values in the original IFF document

On PAL displays, the pixels of Lores screens and Hires-Interlaced screens are square, as they have an
aspect ratio of44/44 and 22/22, respectively. To draw a square 100 pixels wide in one of these PAL
modes, you could simply draw a square that is 100 pixels x 100 pixels. On a PAL Lores-Interiace
display, the Y resolution is doubled, making each pixel half as tall, so you would have to draw a
rectangle that was 100 pixels x 200 pixels to get the same size square.

On an NTSC display, pixels are not square. Pixels on a Lores NTSC screen have an aspect ratio of
44/52 (or 11/13). This means that each pixel is slightly narrower than it is high.

To draw a true square that is 100 pixels wide in an arbitrary display mode, it is necessary to calculate
the correct height for the square based on the pixel aspect ratio.

width / yAspect = height / xAspect

(in words, width is to yAspect as height is to xAspect)

If the X/Y aspect is 44/52 (Lores NTSC), the calculation would be:

100/52 = height/44

height = (100 * 44) / 52 = 4400 / 52 /* solve for height */

Because this example uses only integer math, the ratio must be rounded to the nearest integer. A
fraction a/b (where a and b are integers) rounded to the nearest integer approximately equals:

(a+(b/2))/b

apply this to the ratio above:

height = (4400 + (52»1)) / 52 /* with rounding */
height = 4426/52 = 85.115384... /* Approximate */
height = 85 /* truncated */

Therefore, to be square on a44/52 aspect screen, a 100 pixel wide square would have to be 85 pixels
tall.

Related Amiga Articles 5

Appendix C Finding the Aspect Ratio

Under V2.0 and the ECS chip set, the Amiga display is more dynamic. It has many new display
modes, each of which has its own distinct pixel aspect ratio. For this reason, it is not practical nor
desirable to haidcode the aspect ratios for the modes that you know about (except when running
under VI.3). When running under V2.0, the pixel aspect should be determined by querying the
display database (see the article “An Introduction to V36 Screens and Windows” from the September
/October 1990 issue of Amiga Mail for more information on how to query the display database).
A valid Displaylnfo structure contains the X and Y aspect in the Resolutions and Resolution.y
fields. When writing an ELBM under V2.0, use these pixel aspects from the display database for
the BMHD chunk’s xAspect and yAspect values.

The following example demonstrates how to determine the X and Y aspects under both V2.0 and
V1.3.

/* getaspect.c - Execute roe to compile me with SAS C 5.10
LC -bl -cfistq -v -y -j73 getaspect.c
Blink FROM LIB:c.o,getaspect.o TO getaspect LIBRARY LIB:LC.lib,LIB:Amiga.lib
quit
Gets X/Y pixel aspect of a screen's Viewport

*/

♦include
♦include
♦include
♦include
♦include
♦include
♦include

<exec/types. h>
<exec/memory. h>
<libraries/dos.h>
<intuition/intuition.h>
<intuition/intuitionbase.h>
<graphics/displayinfo.h>
<graphics/gfxbase.h>

♦include
♦include

♦include
♦include
♦include
♦include
♦include

<clib/exec__protos.h>
<clib/dos_protos.h>
<clib/intuition_protos.h>
<clib/graphics protos.h>
<stdlib.h>
<stdio.h>
<string.h>

♦ifdef LATTICE
int CXBRK(void) { return(0); } /* Disable Lattice CTRL/C handling */
int chkabort(void) { return(0); } /* really */
♦endif

♦define MINARGS 1

UBYTE *vers * "\0$VER: getaspect 37.1";
UBYTE ^Copyright =

"getaspect v37.1\nCopyright (c) 1990 Commodore-Amiga, Inc. All Rights Reserved";
UBYTE *usage = "Usage: getaspect";

void bye(UBYTE *s, int e);
void cleanup(void);

struct Library *IntuitionBase;
struct Library *GfxBase;

void main(int argc, char **argv)

{
struct Screen *first;
struct Viewport *vp;
struct Displaylnfo DI;
ULONG modeid;
UBYTE xAspect, yAspect;

if (((argc) && (argc<MINARGS)) | | (argv [argc-1] [0]?'))

{
printf("%s\n%s\n",Copyright,usage);
bye("",RETURN OK);

>

/* We will check later to see if we can call V36 functions */
IntuitionBase = OpenLibrary("intuition.library",34);

6 CDTV Developers Reference Manual

Appendix C Finding the Aspect Ratio

GfxBase = OpenLibrary("graphics.library",34);

if ((!IntuitionBase) II (!GfxBase))
bye("Can't open intuition or graphics library",RETURN_FAIL);

printf("Using front screen's Viewport (for example purposes only):\n");

first = ((struct IntuitionBase *) IntuitionBase) ->FirstScreen;
vp * £first->ViewPort;

xAspect = 0; /* So we can tell when we've got it */

if (GfxBase->lib Version >= 36)

{
modeid = GetVPModelD(vp);
if (GetDisplaylnfoData(NULL, (UBYTE *)£DI, sizeof(struct Displaylnfo),

DTAG_DISP, modeid))

{
printf("Running 2.0, Viewport modeid is $%081x\n",modeid);
xAspect = DI.Resolution.x;
yAspect = DI.Resolution.y;
printf("Pixel xAspect=%ld yAspect=%ld\n",xAspect, yAspect);
printf("PaletteRange is %ld\n",DI.PaletteRange);

}
}

if (!xAspect) /* pre-2.0 or GetDisplaylnfoData() failed */

{
modeid = vp->Modes;
printf("Not running 2.0, Viewport mode is $%041x\n",modeid);
xAspect = 44; /* default lores pixel ratio */
yAspect = ((struct GfxBase *)GfxBase)->DisplayFlags & PAL ? 44 : 52;

if (modeid £ HIRES)
xAspect = xAspect >> 1;

if (modeid & LACE)
yAspect = yAspect >> 1;

printf("Pixel xAspect-%ld yAspect-%ld\n",xAspect, yAspect);

)

bye("",RETURN OK);

}
void bye(UBYTE *s, int e)

{
cleanup () ;
exit(e);

}
void cleanup()

{
if (GfxBase)

CloseLibrary(GfxBase);
if (IntuitionBase)

CloseLibrary(IntuitionBase);

}

Related Amiga Articles 7

Appendix D CDTV Technical Specifications

CDTV Technical Specifications

Video Outputs
Analog RGB, Digital RGBI (DB-23 connector)
Composite video NTSC (RCA connector)
Component video Y-C (S connector type for S-VHS and Hi 8)
RF Modulated (F connector)
Optional genlock capabilities via plug-in module:
three-mode (CDTV, video source or mixed) under software control

Video Display
400 lines/Vertical frequency 60Hz(NTSC); 512 lines/Vertical frequency 50Hz(PAL)
Graphic coprocessor with beam synced draw, fill, and move modes (blitter)
Maximum 1MB video memory (chip memory)
Palette of4096 colors
8 sprites per scanline

Microprocessor
Motorola 68000 16/32 bit 7.16 MHz (NTSC); 7.09 MHz (PAL)

Custom Chips
Three Amiga-specific custom chips (Agnus, Paula and Denise) that enhance system perfor¬
mance by taking over tasks such as handling video, sound, direct memory access (DMA),
and/or graphics

Memory
1MB Chip RAM
2K non-volatile RAM reserved for system
512KROM

Internal Slots
Intelligent video slot (for optional genlock, RF board, etc.) DMA slot for SCSI, LAN, etc.

CDTV Technical Specifications 1

Appendix D CDTV Technical Specifications

CD Audio Specs
8X oversampling
Audio output
Frequency response
Signal/Noise
Channel Separation
Harmonic Distortion

External 1.4 VRMS, 10K OHM
4-20KHz
-102db
-92db
0.02% at lKHz

Maximum audio capacity 28 hours—AM quality
Sample Rates variable from CD audio rate

(44KHz) to 6KHz
Dual 16-bit D/A converter plus 64 levels of attenuation

CD-ROM Drive Specs
Sony/Philips type CD-ROM standard Mode 1 Mode 2
Data readout from disk 153 KBytes/sec (Mode 1)

171 KBytes/sec (Mode 2)
Average access time
Maximum access time
Soft read error
Hard read error
Seek error
Commands

0.5 sec
0.8 sec
Less than 10e-9
Less than 10e-12
Less than 10e-6
CD-ROM, CD Audio, CD+G

MTBF 10,000 RO.H.
Standard Supported ISO-9660
Data Capacity 540 MB

Front Port
Stereo Headphone Jack
Port for optional personal RAM/ROM card (256K)

Rear Ports
Centronics parallel interface
RS-232 serial interface
External floppy disk drive interface (Amiga compatible)
Hardwired alternative to IR for keyboard, mouse, joystick, 2 audio output ports (RCA-type

plug)
MIDI in and out

Power Consumption
50W (average AC100-240V, 50/60Hz)

Dimensions
Player 17.25"wxl2.5"Dx3.7"H
IR 8.25"Wx2.75Dx.88”H

2 CDTV Developers Reference Manual

C
M

S

Appendix D CDTV Technical Specifications

Video Port Connector

CDTV Technical Specifications 3

Appendix D CDTV Technical Specifications

Diagnostic Port Connector

4 CDTV Developers Reference Manual

Appendix D CDTV Technical Specifications

Memory Card Connector

CDTV Technical Specifications 5

Appendix E Administrative Forms

Administrative Forms

Administrative Forms 1

0
9

C
O

INSTRUCTIONS FOR COMPLETING
CDTV

MANUFACTURING LICENSE

1. Make a copy of the License Agreement for your future uae.

Complete and sign two copies of the attached contract.
Complete and sign a separate copy of the Exhibit for each title you

plan to manufacture.
4. Return the two signed copies to:

CATS Administration

CDTV License Enrollment

1200 Wilson Drive

West Chester, PA 19380

The license will then be processed and signed by an officer of the corporation and one

copy returned to you. You will receive your licensed developer discs and materials

shortly after that

COMMODORE CDTV PRODUCT LICENSE

THIS Agreement is entered into and made effective this_day of_, 199 ,
by and between Commodore Holding B.V. ("Commodore"), and the LICENSEE identified below.

1.0 DEFINITIONS

1.1 "CDTV Player* means a proprietary system capable of retrieving program information
from a CD-ROM, which system is distributed under the trademark "CDTV", and manufactured by
Commodore or by a third party under a written license from Commodore.

1.2 "Product" means the work identified in Exhibit 1 (the "Work"), as manufactured
hereunder in a CD-ROM format compatible with the CDTV Player, together with such corrections,
modifications, improvements and updates to the Product that do not substantially alter its original
structure, content or functionality.

1.3 licensed Software" means those programs which Commodore makes available
hereunder far (a) inclusion by LICENSEE in the Product (the "Application Software"), (b)
LICENSEE’S use in preparing and testing the Work to be manufactured hereunder (the "Utility
Software"), and (c) LICENSEE’S use in building a master image of the prepared and tested Work (the
"Mastering Software"), together with such corrections, modifications, improvements and updates to
the Licensed Software which Commodore makes generally available to licensees of the Licensed
Software, without separate charge, and including any instructions, user manuals and other related
documentation made available by Commodore to facilitate LICENSEE’S use of such Licensed Software.

1.4 "Commodore’s Proprietary Rights" means any and all patents, copyrights, and trade
secrets, owned or controlled by Commodore during the term of this Agreement, which cover inventions,
works and processes used or useful in preparing the Product for manufacture and in making the
Product compatible with the CDTV Player.

1.5 "Proprietary Marks" means any and all trade names, trademarks, insignias, logos,
proprietary marks, and the like identified in Exhibit 1.

2.0 LICENSE GRANTED

2.1 During the term of this Agreement and subject to the conditions herein, Commodore
hereby grants to LICENSEE a nontransferable (except as specified in Paragraph 10.5), nonexclusive,
license under Commodore’s Proprietary Rights to use the Licensed Software, to manufacture copies of
the Product in accordance with this Agreement for worldwide distribution to end-users, as follows:

(a) to reproduce and to modify with Commodore’s written approval, the Application Software,
and to include the same in the Product,

(b) to employ the Utility Software for the sole purpose of preparing and testing the Work for
manufacture hereunder,

(c) to employ the Mastering Software for the sole purpose of building a master image of the
prepared and tested Work in a format compatible with the CDTV Flayer, and

(d) to produce for distribution, CD-ROM copies of such master image as is created pursuant to
the immediately preceding paragraphs (a) through (c), it being acknowledged by the parties that such
copies may be marketed and distributed to end-users and that end-users may use such Licensed
Software as has been included in the Product as a result of the manufacture of such Product hereunder.

1

2.2 Such license to produce copies of the Product master image as is set forth in Paragraph 2.1
(d), above include the right to have a third-party contractor replicate such master image.

2.3 During the term of this Agreement and subject to the conditions herein. Commodore
hereby grants to LICENSEE the right to use the Proprietary Marks, only in connection with and as
reasonably required for, LICENSEE’S manufacture, distribution, and promotion of the Product
hereunder, provided that LICENSEE’S use of Proprietary Marks shall always be in accordance with
Commodore’s specifications, policies and directions and shall clearly indicate that the same is the
property of Commodore or a Commodore affiliated company, as the case may be, and as reasonably
directed by Commodore. LICENSEE acknowledges that Commodore may, in its reasonable judgment,
at any time object to a specific use or application of any of the Proprietary Marks, specifying the reason
for such objection, in which event LICENSEE will immediately cease such use or application thereof,
except that LICENSEE may with Commodore’s prior permission, which permission shall not be
unreasonably withheld, use a reasonable supply of pre-printed materials that have been ordered or are
on hand. All use by LICENSEE of such Proprietary Marks shall inure to the benefit of Commodore and
its affiliated companies.

2.4 Except for those rights expressly granted above, no other rights or licenses are granted
hereunder, by implication or otherwise. All such other rights, including without limitation the title to
and ownership of the Licensed Software (including any modifications thereto), Commodore’s
Proprietary Bights and Proprietary Marks, as well as all rights relating to the CDTV Player are
reserved to Commodore, its licensors and suppliers, and except as aforesaid the title to and ownership of
the Product are reserved to LICENSEE, its licensors and suppliers.

3.0 TERM AND TERMINATION

3.1 This Agreement shall continue in full force and effect fear a period of two (2) years from the
effective date hereof and will be renewable for subsequent two year periods at LICENSEE’S option, by
written notice to Commodore at least thirty (30) days prior to the termination of any such period,
provided that this Agreement shall automatically sooner terminate if LICENSEE fails to publish the
Product within a twelve (12) month period following such effective date, or fails to continue to
distribute such Product for any period in excess of nine (9) consecutive monthB, or unless terminated
earlier as set forth below.

3.2 In addition to any other remedy which it may have at law or in equity, either party may
immediately terminate this Agreement if the other party (a) materially breaches or fails to perform any
of its obligations hereunder and if such breach or failure is not capable of being corrected, or if such
breach or failure, though correctable, is not corrected within thirty (30) days of notice thereof from the
non- breaching party, or (b) becomes insolvent or admits in writing its inability to pay its debts as they
mature, or (c) files a voluntary petition in bankruptcy, makes an assignment for the benefit of creditors
or has filed against it a petition under any bankruptcy law (and the same is not dismissed within sixty
(60) days). Nothing herein shall prevent either party from seeking immediate injunctive relief or other
appropriate remedy in the event of the other party’s failure to comply with its obligations under
Paragraphs 5.1 through 5.5 of this Agreement, the failure to comply with such obligations being
deemed not correctable.

3.8 LICENSEE may terminate this Agreement at any time and without cause, upon sixty (60)
days written notice to Commodore, providing LICENSEE is not in breach cf any of the terms of this
Agreement and is current with respect to all payments due hereunder. LICENSEE will remain
obligated to pay all accrued amounts that become due and payable to Commodore after any such
termination.

2

4.0 PAYMENTS

4.1 In consideration of the licenses and rights granted hereunder by Commodore, LICENSEE
agrees to pay to Commodore the unit license fee set forth in Exhibit 1 ("License Fee"), for each unit of
Product that is shipped to its customers. Such License Fee shall be payable in accordance with the
provisions of Paragraph 4.2 of this Agreement.

4.2 Within twenty (20) days after the end of each calendar quarter ending after the date on
which Products are first shipped, LICENSEE shall furnish to Commodore, a written report setting
forth the quantity of Products shipped during such quarter and the computation of the aggregate
License Fee payable with respect thereto as calculated using the per unit License Fee set forth in
Exhibit 1. Each unit shall be accompanied by a payment in the amount of the aggregate License Fees
due with respect to that quarter. Commodore shall be entitled to receive interest on any late payments
hereunder at a rate of 11/2% per month or such lesser rate, if any, as may be required by law.

4.3 LICENSEE shall keep books and records in sufficient detail to permit ready and accurate
determination of any License Fees payable by it hereunder. Commodore shall have the right, on one
occasion per calendar quarter on not less than seven (7) business days’ prior notice, to cause its own
accountants or any independent certified public accountant or firm of such accountants to audit such
books and records to verify any such determination. Licensee shall provide all reasonable cooperation.
Commodore shall pay all costs of such accountants unless such audit determines an unremedied
underpayment to Commodore of more than 10% of the aggregate amount properly due to Commodore
as revealed by the audit. In Buch event LICENSEE shall pay all such costs.

4.4 If Commodore shall grant a license with a scope and on terms and conditions
substantially equivalent to that set forth herein at a royalty rate more favorable than that provided in
this Agreement, then LICENSEE shall be entitled to receive the same favorable royalty rate, subject to
the terms and conditions under which such more favorable royalty rate was granted, provided that this
paragraph shall not be construed to apply to licenses granted for other than monetary consideration.

5.0 PROPRIETARY RIGHTS PROTECTION

5 J. Each party acknowledges that by virtue of this Agreement, it may gain access to
information that is confidential and/or proprietary to the other party and that is so marked in writing,
including without limitation, the Product, the Work, the Licensed Software and other trade secrets
related to the CDTV Player and the manufacture of Products compatible there withCConfidential
Information"). For three (3) years from the effective date of this Agreement the party gaining access
to (the "Recipient”) Confidential Information hereunder, will use all reasonable efforts, but not less
than the same degree of care it employs with its own like confidential information, to maintain in
confidence all Confidential Information, to avoid disclosing the same to any third parly, and to avoid
using or permitting others to use the same, commercially or otherwise, in any manner contrary to the
purposes of this Agreement or the best interests of the other party.

5.2 Recipient shall only disclose Confidential Information to those of its employees who have a
need to know the same in order to accomplish the purposes of this Agreement. Prior to disclosing any
Confidential Information hereunder. Recipient shall inform such employees who are to have access to
the Confidential Information, of Recipients limitations, duties and obligations regarding the use,
nondisclosure and copying of the Confidential Information and shall obtain the written agreement of
such employees to comply with those limitations, duties and obligations. The Recipient shall maintain
records of its employees having access to confidential information. Upon reasonable notice to the
Recipient the party disclosing Confidential Information may audit such records.

5.3 Notwithstanding the above, Recipient shall have no obligation with respect to any
information which: (1) was already known to Recipient at the time of receipt hereunder; (2) is or
becomes public or rightfully received by the Recipient from a third party without similar restriction and
without breach hereof; (3) is independently developed by the Recipient without benefit of any disclosure
hereunder, or (4) is approved for release by written authorization of the disclosing party.

5.4 Upon proper termination of thiB Agreement by either party, use of all Licensed Software,
Commodore's Proprietary Rights and Proprietary Marks by LICENSEE shall be discontinued, and the
licenses and rights granted hereunder (except with respect to end-users of the Products shipped prior to
such termination) shall expire and LICENSEE shall have no further rights or access to the Licensed
Software, Commodore’s Proprietary Information and Proprietary Marks. Within thirty (30) days after
any such termination of this Agreement all copies of the Licensed Software (except as has been properly
included in the Product hereunder) and all other materials containing any copy of any Confidential
Information shall be returned to Commodore, or destroyed on Commodore’s written instructions. If
such termination is not a result of any breach of this Agreement by LICENSEE, LICENSEE may .
continue to distribute sudi Products as have been manufactured hereunder prior to such termination
providing LICENSEE shall remain obligated to pay the License Pee for each unit of Product shipped.

5.5 LICENSEE shall not disassemble, decompile or otherwise reverse engineer the Licensed
Software.

5.6 LICENSEE shall not remove or otherwise obliterate any trademark, patent, copyright or
other proprietary rights notices or markings included on or in the Licensed Software, such Product
master image as is prepared by the use of the Licensed Software, or any other materials supplied to
LICENSEE hereunder, and shall reproduce and apply any of the same in and to any copies of such
Licensed Software, Products and materials, in whole or in part, and in any form.

5.7 Notwithstanding any termination of this Agreement, any remaining obligations of the
parties as set forth in this Section 5 shall survive this Agreement.

6.0 OTHER DUTIES AND OBLIGATIONS OF LICENSEE

6.1 Within ten (10) days after the initial manufacture of CD-ROM copies of the Product,
LICENSEE shall cause to be furnished to Commodore at no additional charge to Commodore, to the
attention of CDTV Products Coordinator, do Commodore International, 1200 Wilson Drive, West
Chester, PA. 19380, or such other address as is specified by Commodore in writing, ten CD-ROM copies
of such manufactured hereunder, including such end-user documentation and materials as are to be
generally furnished with the Product, provided that as a condition precedent, Commodore enter into
LICENSEE’S standard end user license agreement covering such copies and materials. Such copies
may be retained by Commodore, subject to such license agreement.

6.2 LICENSEE shall use all reasonable efforts to comply with such quality control standards,
user interface standards and disc packaging standards as are generally promulgated by Commodore
with respect to products for the CDTV Player, provided that such standards are reasonably
promulgated by Commodore, are appropriate to the particular product, and are given to LICENSEE in
a timely manner. LICENSEE will promptly notify Commodore regarding any aspects of the Product for
which LICENSEE will not substantially comply with any such standards that are in effect at the time
LICENSEE releases the Product to manufacturing.

6.3 LICENSEE shall ensure that the Product manufactured hereunder is a professional, high
quality product that LICENSEE reasonably and in good faith believes will not diminish or otherwise
negatively affect the reputation and good will associated with Commodore and the Commodore
Proprietary Marks licensed hereunder.

7.0 WARRANTIES

7.1 Commodore hereby warrants that it (a) has the right and power to enter into this
Agreement and (b) owns or possesses from others (i) all right, title and interest in and to the Licensed
Software, Commodore’s Proprietary Rights, Proprietary Marks and CDTV Player, and (ii) the right to
grant the rights and licenses set forth herein.

7.2 The Licensed Software and other materials provided by Commodore to LICENSEE
hereunder are provided on an "AS IS" basis, without any warranty of any kind except as provided in
Paragraph 7.1, above. ,

4

7*3 Except with respect to the Licensed Software, Commodore’s Proprietary Rights and
Proprietary Marks, which are included in the Product (and which are die subject of the Commodore
warranty as set forth above), LICENSEE hereby warrants that it possesses sufficient right, title and
interest in and to the Product, to reproduce, display and perform such Product, and to authorize others
to so reproduce, display and perform the Product as is required by this Agreement. Except with respect
to such Licensed Software, Commodore’s Proprietary Rights and Proprietary Marks, which are included
in the Product LICENSEE shall be solely responsible hereunder for obtaining such right, title and
interest in and to the Product, and the continuance of such warranty shall be a condition precedent to
such license grants as are made by Commodore herein.

7.4 NEITHER LICENSEE OR COMMODORE MAKE ANY OTHER EXPRESS OR IMPLIED
WARRANTIES INCLUDING, BUT NOT LIMITED TO, ANY WARRANTIES OP
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR
ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.

8.0 LIMITATION OF LIABILITY

8.1 IN NO EVENT WILL EITHER PARTY BE LIABLE FOR ANY LOST REVENUES OR
PROFITS, OR OTHER SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, EVEN IF SUCH
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

9.0 TAXES

All payments required under Section 4.0 or otherwise under this Agreement are exclusive of
withholding and other taxes, and LICENSEE agrees to bear and be responsible for the payment of all
such taxes, including, but not limited to, all sales, use, rental receipt, personal property or other taxes
which may be levied or assessed in connection with this Agreement and excluding only such taxes as
are based upon Commodore’s income.

10.0 MISCELLANEOUS

10.1 All notices and other communications hereunder shall be in writing and effective when
personally delivered, or transmitted by telephone facsimile with a confirmation copy by U.S. first class
air mail or foreign equivalent, to a party at its address or addresses and facsimile numbers set forth
below, or to such other address or addresses as such party shall have last notified to the other. If
mailed, such notice shall be deemed received by the close of business on the date shown on the certified
or registered mail receipt, or when it is actually received, whichever is sooner.

10.2 If any of the provisions, or portions thereof, of this Agreement are invalid under any
applicable statute or rule of law, then, that provision notwithstanding, this Agreement shall remain in
full force and effect and such provision shall be deemed omitted.

10.3 This Agreement and the attached Exhibit 1 which is incorporated herein by reference,
constitute and express the final, entire and exclusive agreement and understanding between the
parties and supersedes all previous communications, representations or agreements, whether written
or oral, with respect to the subject matter hereof.

10.4 This Agreement may not be modified, amended, rescinded, canceled or waived, in whole
or in part, except by a written instrument signed by the parties.

5

10.5 Except in connection with the sale of all or substantially all of LICENSEE’S assets, or the
sale or transfer of a product line that includes the Product, or the sale of LICENSEE or its business (by
merger or otherwise), any of which may be done without the consent of Commodore, this Agreement,
grinding any licenses and rights granted hereunder, may not be sold, leased, assigned, Bublicensed
(except as specified in paragraph 2.2) or otherwise transferred, in whole or in part, by LICENSEE,
without the prior consent of Commodore, which shall not be unreasonably withheld or delayed. This
Agreement shall inure to the benefit of and be binding on any third party’s successor or any party to
whom a transfer hereunder is permitted.

10.6 This Agreement is made under and shall be governed by and construed in accordance
with the laws of the Commonwealth of Pennsylvania, excluding its conflicts of law provisions. The
parties agree to submit to the exclusive jurisdiction of the appropriate courts located in Pennsylvania
for the purpose of any suit, action or other proceeding in connection with this Agreement.

10.7 All payments hereunder Bhall be made in U.S. Dollars by wire transfer or by check
ffddr*««>d to the payee by U.S. first class air mail (or foreign equivalent) at the payee’s applicable
address set forth in Exhibit 1.

10.8 In addition to any other relief, the prevailing party in any action arising out of this
Agreement shall be entitled to reasonable attorneys’ fees and costs.

IN WITNESS WHEREOF, the parties have caused this Agreement to be executed by their duly
authorized representatives.

COMMODORE HOLDING B.V. LICENSEE (print or type only)

By:_ By.-

Name:-—

Tide:

Name:-

Title:

Address: Company:

Address:

Fax No.:

Phone No.:.

Fax No.:

Developer No.:

Date: Date:

6

EXHIBIT 1

The Exhibit is attached to and made a part of that Agreement between Commodore Holding B.V. and
("LICENSEE") dated and effective, 19_

LICENSEE: WORK:

Address:. Description:.

UNIT LICENSE FEE: Twenty-five ($.25) cents

PROPRIETARY MARKS:

CDTV and the CDTV logo

PAYMENTS SHALL BE MADE TO: Commodore Holding B.V., do Commodore Business Machines, Inc., P.O. Box
7777-W6300, Philadelphia, PA 19175

COMMODORE HOLDING B.V. LICENSEE (print or type only)

By: _ By: _

Name:_ Name:_

Title: _ Title: __

Addre88: _ Cnmpjiny:

_ Address:_

Fax No.:_ _

Phone No.:_

Fax No.:_

Developer No.:

Date: ___ Date: _

RJG/0292:mr

7

Appendix F Resources

Resources
The companies listed below pre-master, master, and/or replicate CD-ROMs. They should be

contacted individually for specialties and pricing information.

These companies have been approved for pre-mastering and creating write-once discs

Next (UK)

Elektroson (Netherlands)

Clarinet (UK)

Discovery Systems (USA)

The other companies listed below claim to have pre-mastering services ready. However, we have

not verified their capabilities. Please contact those companies directly for more information on the

pre- mastering services they offer, the data formats they accept as input, their experience in CDTV

Multimedia pre-mastering, etc.

3M OPTICAL RECORDING DEPARTMENT

3M Center 223-5S-01

St Paul, MN 55144-1000

Telephone

Fax

Sales contact

Technical contact

Fax

Territories served

Preferred Source format

One-off service available

Pre-mastering and CDTV ISO building

Terms of Business

612-736-5399

612-733-0158

Don Winklepleck

603-595 0391

Andy Axelsen

800-336 3636

715-235 0500

North and South America, Europe, Far

East
8mm Exabyte, 4 mm DAT, 9 Track, MO,

Hard Disk, CDWO, 3480, DC6150 (QIC)
Call

Call

Net 30 days

ADVANCED MEDIA GROUP, LTD.

P.O. Box 1623

Lancaster, PA 17603

Telephone

Fax

Sales contact

Technical contact

Territories served

Preferred source format

Terms of Business

One-off service

Pre-mastering and CDTV ISO building

717-392-6533

717-392-0532

Stan Caterbone

Stan Caterbone/Mike Hess

North and South America, Europe, Far

East
Tape, hard disk. All media accepted upon

prior approval
Upon invoice Net 30 with prior approval

No

No

Resources 1

Appendix F Resources

AMERIC DISC INC.
2525 Canadien
Drummondville, Quebec
CANADA J2B8A9
Telephone
Fax
Salescontact
Technical contact
Territories served
Preferred source format
Terms of Business
One-off service
Pre-mastering and CDTV ISO building

ATTICA CYBERNETICS LTD.
Unit 2 Kings Meadow
Ferry Hinksey Road
Oxford. England 0X2 ODP
Telephone
Fax
Sales contact
Technical contact
Territories served
Preferred source format

Terms of Business

One-off service
Pre-mastering and CDTV ISO building

CLARINET SYSTEMS LTD.
White Hart House
London Road
Blackwater, Camberiey, Surrey. UK
Telephone
Fax
Sales contact
Technical contact
Territories served
Preferred source format
One-off service
Pre-mastering and CDTV ISO building

819-474-2655
819-474-2870
A. Frank Johansen
Peter Frame
Canada, USA, South America
8mm Exabyte, 9 track tape, CD-ROM
Net 30 days on credit approval
No
No

44-865-791-346
44-865-794-561
Gill Diskson
Ian Ellison
Worldwide, from UK office
AmigaDOS file on SCSI drive. Other
options available
Payment in advance; credit for UK com¬
panies by arrangement
Call
Call

44-276-600-398
44-276-600-592
Stephen Schoiefield
Chris Simmonds
UK, Europe
Hard disk, DAT, floppy, Exabyte, 1/2 inch tape
Available
Available

2 CDTV Developers Reference Manual

Appendix F Resources

DIGIPRESS
2516 River Bend Drive
Louisville, KY 40206
Telephone 502-895-0565
Contact Dennis Oudard

In Europe, contact
DIGIPRESS
10 me de Paris
78100 Saint-Germ ain-en-Laye
France
Telephone 33-1-30-61-11-00
Contact Marc Deflassieux

DIGITAL AUDIO DISC CORPORATION (DADC)
1800 N. Fruitridge Ave.
Terre Haute, IN 47804
Customer service Telephone
Customer service Fax
Salescontact
Telephone
Fax
Technical Contact
Telephone
Fax
Territories served
Preferred source format
Terms of Business
One-off service
Pre-mastering and CDTV ISO building

812-462-8192
812-466-2007
Bob Hurley
603-595-4331
603-595-4310
Cliff Brannon
812-462-8286
812-466-9125
USA, Europe, Far East
9 track tape, MO, 8mm, 4mm, CD WO
1% 10 Net 30
Available
Available soon

DISCOVERY SYSTEMS
7001 Discovery Boulevard
Dublin, OH 43017
Telephone
Fax
Sales Contact
Technical Contact
Territories served
Preferred Source format

One-off service
Pre-mastering and CDTV ISO building
Terms of business

614-761-2000
614-741-4258
Greg Tiller
Alex Deak, Customer Service
North America, Europe, Australia
9 track or 8mm tape. Call for additional
options.
Available
Yes
90 days net

Resources 3

Appendix F

DISC MANUFACTURING, INC.
1120 Cosby Way
Anaheim, CA 92086
Telephone
Fax
Sales contact
Technical contact

You may also contact
DISC MANUFACTURING, INC.
A Quixote Company
4905 Moores Mill Rd.
Huntsville, AL. 35810
Telephone
Fax
Sales contact
Technical contact
Territories served
Preferred Source format

One-off service
Pie-mastering and CDTV ISO building
Terms of Business

ELEKTROSON
Velderseweg 25
5298LELiempde
THE NETHERLANDS
Telephone
Fax
Sales and technical contact
Territories served
One-off service
Pie-mastering and CDTV ISO building

M.P.O.
195 Ave. Charles de Gaulle
92200 NEUILLY SUR SEINE
FRANCE
Telephone
Fax
Sales contact
Technical contact
Territories served

Preferred Source Format
One-off service available
Pre-mastering and CDTV ISO building
Terms of business

4 CDTV Developers Reference Manual

Resources

714-630-6700
714-630-1025
Wan Seegmiller
Leon Whidbee

205-859-9042
205-859-9932
Kim Vandenberghe
Shogo Karitani
North and South America, Europe, Far East
8mm Exabyte, Pinnacle MO, One-off
CD, 9- track computer tape
Call
Call
Net 30 days, on credit approval

31-4113 3021
31-4113 2763
Dr. R.C.H. BROERS
Europe
Yes
Yes

331-47222000
331-4722 6077
Bruno d’ORGEVAL
Marc des RIEUX
USA/Canada (Disc Americ)
Europe (MPO), Spain (Techno-CD)
Video 8mm
Yes
Yes
60 days

Appendix F Resources

MULTI MEDIA MASTERS & MACHINERY SA
Av. des Sports 42
CH - 14000 YVERDON-LES-BAINS
SWITZERLAND
Telephone
Fax
Sales contact
Technical contact
Territories served
Preferred Source Format

One-off service
Pre-mastering and CDTV ISO building
Terms of business

41-242371 11
41-242371 12
Gregory KOLER
Albert KHOURY
Europe, USA if required
9 track tape, 8 mm Exabyte, 2/4 U Made,
DAT, 5.25" Optical
Call
Call
Net 30 days

NEXT TECHNOLOGY CORPORATION LTD.
Sl John’s Innovation Center
Cambridge
Cambridgeshire CB4 4WS
UNITED KINGDOM
Telephone
Fax
Sales contact
Technical contact
Territories served
Pre-mastering and CDTV ISO building

44-223420222
44-223 420015
Ian Thomas
Neil Critchell
Europe
Yes

NEXT specializes in pre-mastering and CDTV ISO building services

NIMBUS INFORMATION SYSTEMS
SR 629, Guildford Farm
Ruckersville, VA 22968
Telephone
Fax
Sales contact
Technical contact

In Europe, contact
NIMBUS INFORMATION SYSTEMS
Wyastone Leys, Monmouth
GWENT NP5 3SR
United Kingdom
Telephone
Fax
Sales contact
Technical Contact
Territories served
Preferred source format
Terms of business
One-off service
Pre-mastering and CDTV ISO building

804-985-1100 or 800-732-07,8
804-985-4625
Larry Boden
Ernest Runyon

44-600-890682
44-600-890779
Steve Connoly
Jim Orr
USA and Europe
4mm DAT or 8mm Exabyte
Net 30 days, upon credit approval
Call
CaH

Resources 5

Appendix i* 1 Resources

ON-SITE CD SERVICES
13901 Lyndie Ave.
Saratoga, CA 95070
Telephone
Fax
Sales contact
Technical contact
Territories served
Preferred source format
One-off service
Pre-mastering and CDTV ISO building

408)867 0514
408-8670518
Rick Wittwer
Lance Buder
USA
8 mm. ANSI labeled image or hard disk
Call
Call

On-Site is a pre-mastering specialist, located in California. They do not replicate discs in quantity.

OPTICAL MEDIA STORAGE SP.A.
Locality Campo di Pilek
67100 L’Aquila
ITALY
Telephone
Fax
Technical contact
Territories served
Preferred source format

One-off service
Pre-mastering and CDTV ISO building

39-8623311
39-862315366
Antonio Bruno
Europe
9 track tape, hard disc, CD-WO, CD-
ROM ISO image
Call
No

PHILLIPS AND DU PONT OPTICAL
1409 Foulk Road, Suite 200
Wilmington, DE 19803
Telephone
Fax
Sales contact—USA
Telephone
Technical contact
Telephone
Territories served
Preferred source format
Terms of business Net 30 days
One-off service
Pre-mastering and CDTV ISO building
P.D.O. offers pan-European services. Here

302-479-2501
302-479-2512
Joe Bradley
301-989-9341
Jim Fricks
704-734-4211
USA and Europe
8mm, 9-track tape, one-off CD

available in USA
USA only

are contact addresses and numbers in other countries.

PDO Headquarters
Building EF-2
P.O.Box 218
5600 MD Eindhoven
THE NETHERLANDS
Telephone 31-40-751120
Fax 31-40-757866

Developers Reference Manual

Appendix F

PDO Technical Support—Europe
Klusriede 26
D-3012 Langenhagen 1
GERMANY
Telephone
Fax

49-511-7306-253
49-511-7306-694

PDO sales office for Benelux and Italy
Building EF-2
P.O.Box 218
5600 MD Eindhoven

THE NETHERLANDS
Telephone
Fax

31-40-75U20
31-40-757866

PDO sales office for the UK, Ireland and Scandinavia
Queen Anne Nouse
11 The Green
Richmond upon Thames
Surrey TW9 IPX
UK

Telephone
Fax

44-81-948-7368
44-81-940-7137

PDO sales office for France and Spain
43 Avenue Marceau
F-75116 Paris
FRANCE
Telephone
Fax 33-1-4070-1126

33-1-4070-1123

PDO Sales office for Germany, Austria aid Switzerland
Adenauerallee 32
D-2000 Hamburg 1
Germany

Telephone 49-40-280-1391
Fax

49-40-280-1785

Appendix F
Resources

SONOPRESS GMBH
Carl-Beitelsmann-Str. 161

D-4830 Gutersloh 100
Germany
Telephone
Fax
Sales contact
Technical contact
Telephone
Fax
Territories served
Preferred source format

Terms of business
One-off service
Pre-mastering service

49-5241-803074
49-5241-73686
Dr. Reinhard Raubenheimer

Ulrich Graznow
49-5241-805250
49-5241-75863
all European countries, USA if required
9 track tape. Exabyte, SCSI harddisk. Au¬

dio input media Sony 1610/1630
Based on customer requirements

Call
Call

Sonopress provides pan-European
services. Here are contact names and numbers in other countries

SONOPRESS UK
Sales contact
Telephone

Fax

Sabine Leuerer
44-71499-6813
44-71493-7244

SONOPRESS FRANCE
Sales contact Madame Bomhold

Telephone
Fax

33-145-636707
33-143-596673

SONOPRESS ITALY
Sales contact Dr. Paolo Montagna

Telephone
Fax

39-2-76004737
39-2-7601-5026

8 CDTV Developers Reference Manual

